INNER-OUTER CURVATURES, OLLIVIER-RICCI CURVATURE AND VOLUME GROWTH OF GRAPHS

被引:2
作者
Adriani, Andrea [1 ]
Setti, Alberto G. [1 ]
机构
[1] Univ Insubria, DiSTA, Via Valleggio 11, I-22100 Como, Italy
关键词
Infinite weighted graphs; curvature; volume growth; METRIC-MEASURE-SPACES; FELLER PROPERTY;
D O I
10.1090/proc/15583
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the study of different notions of curvature on graphs. We show that if a graph has stronger inner-outer curvature growth than a model graph, then it has faster volume growth too. We also study the relationships of volume growth with other kind of curvatures, such as the Ollivier-Ricci curvature.
引用
收藏
页码:4609 / 4621
页数:13
相关论文
共 21 条
[1]  
Bauer F, 2012, MATH RES LETT, V19, P1185, DOI 10.4310/MRL.2012.v19.n6.a2
[2]   Volume Growth, Curvature, and Buser-Type Inequalities in Graphs [J].
Benson, Brian ;
Ralli, Peter ;
Tetali, Prasad .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (22) :17091-17139
[3]   Volume doubling, Poincare inequality and Gaussian heat kernel estimate for non-negatively curved graphs [J].
Horn, Paul ;
Lin, Yong ;
Liu, Shuang ;
Yau, Shing-Tung .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 757 :89-130
[4]   COVERINGS AND THE HEAT EQUATION ON GRAPHS: STOCHASTIC INCOMPLETENESS, THE FELLER PROPERTY, AND UNIFORM TRANSIENCE [J].
Hua, Bobo ;
Muench, Florentin ;
Wojciechowski, Radoslaw K. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (07) :5123-5151
[5]   Stochastic completeness for graphs with curvature dimension conditions [J].
Hua, Bobo ;
Lin, Yong .
ADVANCES IN MATHEMATICS, 2017, 306 :279-302
[6]  
Hua Bobo, 2017, ARXIV171201494
[7]   Stochastic incompleteness for graphs and weak Omori-Yau maximum principle [J].
Huang, Xueping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) :764-782
[8]   Volume growth, spectrum and stochastic completeness of infinite graphs [J].
Keller, Matthias ;
Lenz, Daniel ;
Wojciechowski, Radosaw K. .
MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) :905-932
[9]   Ricci-flat graphs with girth at least five [J].
Lin, Yong ;
Lu, Linyuan ;
Yau, S. -T. .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2014, 22 (04) :671-687
[10]   RICCI CURVATURE OF GRAPHS [J].
Lin, Yong ;
Lu, Linyuan ;
Yau, Shing-Tung .
TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) :605-627