Solitary water wave interactions for the forced Korteweg-de Vries equation

被引:9
作者
Flamarion, Marcelo, V [1 ]
Ribeiro-Jr, Roberto [2 ]
机构
[1] UFRPE Rural Fed Univ Pernambuco, UACSA Unidade Acade Cabo de Santo Agostinho, BR 101 Sul,5225, BR-54503900 Cabo De Santo Agostinho, PE, Brazil
[2] UFPR Fed Univ Parana, Ctr Politecn, Dept Matemat, Caixa Postal 19081, BR-81531980 Curitiba, Parana, Brazil
关键词
KdV equation; water wave equation; solitons; collision of solitary waves; SOLITONS;
D O I
10.1007/s40314-021-01700-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to study solitary water wave interactions between two topographic obstacles for the forced Korteweg-de Vries equation (fKdV). Focusing on the details of the interactions, we identify regimes in which solitary wave interactions maintain two well separated crests and regimes where the number of local maxima varies according to the laws 2 -> 1 -> 2 -> 1 -> 2 or 2 -> 1 -> 2. It shows that the geometric Lax-categorization of Korteweg-de Vries (KdV) two-soliton interactions still holds for the fKdV equation.
引用
收藏
页数:9
相关论文
共 17 条
[1]  
Baines P. G., 1995, Topographic Effects in Stratified Flows
[2]   Solitary water wave interactions [J].
Craig, W ;
Guyenne, P ;
Hammack, J ;
Henderson, D ;
Sulem, C .
PHYSICS OF FLUIDS, 2006, 18 (05)
[3]   Soliton interaction with external forcing within the Korteweg-de Vries equation [J].
Ermakov, Andrei ;
Stepanyants, Yury .
CHAOS, 2019, 29 (01)
[4]   Rotational waves generated by current-topography interaction [J].
Flamarion, Marcelo V. ;
Milewski, Paul A. ;
Nachbin, Andre .
STUDIES IN APPLIED MATHEMATICS, 2019, 142 (04) :433-464
[5]   INTERACTION OF A SOLITARY WAVE WITH AN EXTERNAL FORCE [J].
GRIMSHAW, R ;
PELINOVSKY, E ;
TIAN, X .
PHYSICA D, 1994, 77 (04) :405-433
[6]   Stability of steady gravity waves generated by a moving localised pressure disturbance in water of finite depth [J].
Grimshaw, Roger ;
Maleewong, Montri .
PHYSICS OF FLUIDS, 2013, 25 (07)
[7]   Models for the formation of a critical layer in water wave propagation [J].
Johnson, R. S. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1964) :1638-1660
[8]  
Joseph A., 2016, INVESTIGATING SEAFLA
[10]  
Milewski PA, 2004, Cubo Math J, V6, P33