Iterative simulation-based techniques for control of laser powder bed fusion additive manufacturing

被引:24
作者
Irwin, Jeff E. [1 ,2 ]
Wang, Qian [1 ]
Michaleris, Panagiotis
Nassar, Abdalla R. [3 ]
Ren, Yong [1 ]
Stutzman, Christopher B. [3 ]
机构
[1] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[2] Autodesk Inc, 200 Innovat Pk, State Coll, PA 16803 USA
[3] Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Laser powder bed fusion; Finite element analysis; Numerical methods; Process control; DEPOSITION; PARAMETERS; MICROSTRUCTURE; OPTIMIZATION; MODEL;
D O I
10.1016/j.addma.2021.102078
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the challenges for process control of laser powder bed fusion additive manufacturing lies in thermal control. Excessively low laser power may lead to incomplete melting, while too high laser power can lead to keyholing, increasing the porosity of parts. Considering a thermal finite-element model from our prior work, a secant-based iterative method is proposed and implemented in this work to control the simulated laser power to attain a constant melt-pool size. Several experimental samples of Inconel 625 are designed and built with the EOSINT M280 system, and cross-sectioned to evaluate the effectiveness of the iterative simulation-based controller of laser power. Cross-sectional area statistics are collected near laser turnarounds, where the melt pool is most dynamic. The iterative simulation-based controller reduces the variation of melt pool size by between 13.4% and 48.8% compared to applying constant laser power for all configurations. With the extra iterations from the secant method, the controlled simulations take roughly 2.3 times longer than the simulations under constant laser power.
引用
收藏
页数:16
相关论文
共 47 条
[1]   Determination of welding heat source parameters from actual bead shape [J].
Azar, Amin S. ;
As, Sigmund K. ;
Akselsen, Odd M. .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 54 :176-182
[2]  
Beuth J., 2013, 24 INT SFF S ADD MAN, P655, DOI [DOI 10.26153/TSW/15590, DOI 10.1017/CBO9781107415324.004]
[3]  
Cao XQ, 2015, P AMER CONTR CONF, P3637, DOI 10.1109/ACC.2015.7171895
[4]  
Cao XQ, 2015, P AMER CONTR CONF, P3625, DOI 10.1109/ACC.2015.7171893
[5]   3D FINITE ELEMENT ANALYSIS IN THE SELECTIVE LASER MELTING PROCESS [J].
Contuzzi, N. ;
Campanelli, S. ;
Ludovico, A. D. .
INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2011, 10 (03) :113-121
[6]   Feedback control of Layerwise Laser Melting using optical sensors [J].
Craeghs, Tom ;
Bechmann, Florian ;
Berumen, Sebastian ;
Kruth, Jean-Pierre .
LASER ASSISTED NET SHAPE ENGINEERING 6, PROCEEDINGS OF THE LANE 2010, PART 2, 2010, 5 :505-514
[7]   Influence of layer thickness and post-process treatments on the fatigue properties of CoCr scaffolds produced by laser powder bed fusion [J].
Cutolo, Antonio ;
Neirinck, Bram ;
Lietaert, Karel ;
de Formanoir, Charlotte ;
Van Hooreweder, Brecht .
ADDITIVE MANUFACTURING, 2018, 23 :498-504
[8]   Thermomechanical model development and in situ experimental validation of the Laser Powder-Bed Fusion process [J].
Denlinger, Erik R. ;
Gouge, Michael ;
Irwin, Jeff ;
Michaleris, Pan .
ADDITIVE MANUFACTURING, 2017, 16 :73-80
[9]   Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing [J].
Druzgalski, C. L. ;
Ashby, A. ;
Guss, G. ;
King, W. E. ;
Roehling, T. T. ;
Matthews, M. J. .
ADDITIVE MANUFACTURING, 2020, 34
[10]  
Dunbar AlexanderJ., 2016, Proc. of the 27th Annual Solid Freeform Fabrication Symposium (Austin, TX, P67