On the Dynamics of Lipschitz Operators

被引:4
作者
Abbar, Arafat [1 ]
Coine, Clement [2 ]
Petitjean, Colin [1 ]
机构
[1] Univ Paris Est Creteil, Univ Gustave Eiffel, LAMA, CNRS, F-77447 Marne La Vallee, France
[2] Normandie Univ, UNICAEN, CNRS, LMNO, F-14000 Caen, France
关键词
Chaoticity; Cyclicity; Hypercyclicity; Lipschitz-free space; Supercyclicity; Transitivity; Weakly mixing; CHAOS;
D O I
10.1007/s00020-021-02662-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By the linearization property of Lipschitz-free spaces, any Lipschitz map f : M -> N between two pointed metric spaces may be extended uniquely to a bounded linear operator (f) over cap : F(M) -> F(N) between their corresponding Lipschitz-free spaces. In this note, we explore the connections between the dynamics of Lipschitz self-maps f : M -> M and the linear dynamics of their extensions (f) over cap : F(M) -> F(M). This not only allows us to relate topological dynamical systems to linear dynamical systems but also provide a new class of hypercyclic operators acting on Lipschitz-free spaces.
引用
收藏
页数:27
相关论文
共 28 条
[1]   Lipschitz structure of quasi-Banach spaces [J].
Albiac, F. ;
Kalton, N. J. .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 170 (01) :317-335
[2]   Embeddings of Lipschitz-free spaces into l1 [J].
Aliaga, Ramon J. ;
Petitjean, Colin ;
Prochazka, Antonin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (06)
[3]   Supports in Lipschitz-free spaces and applications to extremal structure [J].
Aliaga, Ramon J. ;
Pernecka, Eva ;
Petitjean, Colin ;
Prochazka, Antonin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)
[4]   Supports and extreme points in Lipschitz-free spaces [J].
Aliaga, Ramon J. ;
Pernecka, Eva .
REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (07) :2073-2089
[5]   A splitting theorem for transitive maps [J].
Alsedà, L ;
del Río, MA ;
Rodríguez, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 232 (02) :359-375
[6]   Entropy and periodic points for transitive maps [J].
Alseda, LL ;
Kolyada, S ;
Llibre, J ;
Snoha, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (04) :1551-1573
[7]   Existence of hypercyclic operators on topological vector spaces [J].
Ansari, SI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 148 (02) :384-390
[8]   CHAOS, PERIODICITY, AND SNAKELIKE CONTINUA [J].
BARGE, M ;
MARTIN, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 289 (01) :355-365
[9]  
Bayart F, 2009, CAMB TRACT MATH, P1, DOI 10.1017/CBO9780511581113
[10]   Hereditarily hypercyclic operators [J].
Bès, J ;
Peris, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (01) :94-112