An inverse problem in periodic diffractive optics: global uniqueness with a single wavenumber

被引:25
作者
Elschner, J
Schmidt, G
Yamamoto, M
机构
[1] Weierstr Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
关键词
D O I
10.1088/0266-5611/19/3/318
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of recovering a perfectly reflecting two-dimensional diffraction grating from the knowledge of one wavenumber, one incident direction and the total field measured above the grating. We prove a global uniqueness result within the class of polygonal grating profiles. The proof relies on the analyticity of solutions to the Helmholtz equation and the Rayleigh expansion of the scattered field.
引用
收藏
页码:779 / 787
页数:9
相关论文
共 11 条
  • [1] A UNIQUENESS THEOREM FOR AN INVERSE PROBLEM IN PERIODIC DIFFRACTIVE OPTICS
    BAO, G
    [J]. INVERSE PROBLEMS, 1994, 10 (02) : 335 - 340
  • [2] BAO G, 2003, P INT C INV PROBL HO, P37
  • [3] Bottcher A., 1989, ANAL TOEPLITZ OPERAT
  • [4] An inverse problem in diffractive optics: conditional stability
    Bruckner, G
    Cheng, J
    Yamamoto, M
    [J]. INVERSE PROBLEMS, 2002, 18 (02) : 415 - 433
  • [5] BRUCKNER G, 2001, T JAPAN SOC COMPUT M, V1, P61
  • [6] Colton D., 2019, Inverse Acoustic and Electromagnetic Scattering, V93
  • [7] ELSCHNER J, IN PRESS J INVERSE I, V11
  • [8] Elschner J., 2002, Appl. Anal., V81, P1307
  • [9] Schiffer's theorem in inverse scattering theory for periodic structures
    Hettlich, F
    Kirsch, A
    [J]. INVERSE PROBLEMS, 1997, 13 (02) : 351 - 361
  • [10] KIRSCH A, 1993, P LAPL C INV PROBL, P87