Exciton valley depolarization in monolayer transition-metal dichalcogenides

被引:27
作者
Yang, Min [1 ]
Robert, Cedric [2 ]
Lu, Zhengguang [3 ,4 ]
Dinh Van Tuan [1 ]
Smirnov, Dmitry [3 ]
Marie, Xavier [2 ]
Dery, Hanan [1 ,5 ]
机构
[1] Univ Rochester, Dept Elect & Comp Engn, 601 Elmwood Ave, Rochester, NY 14627 USA
[2] Univ Toulouse, INSA CNRS UPS, LPCNO, 135 Av Rangueil, F-31077 Toulouse, France
[3] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[4] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[5] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
STOCHASTIC VARIATIONAL METHOD; FEW-BODY PROBLEMS; DARK EXCITONS; SPIN; POLARIZATION; SEMICONDUCTORS; DYNAMICS; MOS2;
D O I
10.1103/PhysRevB.101.115307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The valley degree of freedom is a sought-after quantum number in monolayer transition-metal dichalcogenides. Similar to optical spin orientation in semiconductors, the helicity of absorbed photons can be relayed to the valley (pseudospin) quantum number of photoexcited electrons and holes. Also similar to the quantum-mechanical spin, the valley quantum number is not a conserved quantity. Valley depolarization of excitons in monolayer transition-metal dichalcogenides due to long-range electron-hole exchange typically takes a few ps at low temperatures. Exceptions to this behavior are monolayers MoSe2 and MoTe2 wherein the depolarization is much faster. We elucidate the enigmatic anomaly of these materials, finding that it originates from Rashba-induced coupling of the dark and bright exciton branches next to their degeneracy point. When photoexcited excitons scatter during their energy relaxation between states next to the degeneracy region, they reach the light cone after losing the initial helicity. The valley depolarization is not as fast in monolayers WSe2, WS2, and MoS2, wherein the degeneracy is absent resulting in negligible Rashba-induced coupling between bright and dark excitons.
引用
收藏
页数:12
相关论文
共 83 条
[31]   Spin-Orbit Coupling, Quantum Dots, and Qubits in Monolayer Transition Metal Dichalcogenides [J].
Kormanyos, Andor ;
Zolyomi, Viktor ;
Drummond, Neil D. ;
Burkard, Guido .
PHYSICAL REVIEW X, 2014, 4 (01)
[32]   Low-temperature photocarrier dynamics in monolayer MoS2 [J].
Korn, T. ;
Heydrich, S. ;
Hirmer, M. ;
Schmutzler, J. ;
Schueller, C. .
APPLIED PHYSICS LETTERS, 2011, 99 (10)
[33]   Large spin splitting in the conduction band of transition metal dichalcogenide monolayers [J].
Kosmider, K. ;
Gonzalez, J. W. ;
Fernandez-Rossier, J. .
PHYSICAL REVIEW B, 2013, 88 (24)
[34]   Carrier and Polarization Dynamics in Monolayer MoS2 [J].
Lagarde, D. ;
Bouet, L. ;
Marie, X. ;
Zhu, C. R. ;
Liu, B. L. ;
Amand, T. ;
Tan, P. H. ;
Urbaszek, B. .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)
[36]   Theory of Spin-Dependent Phonon-Assisted Optical Transitions in Silicon [J].
Li, Pengke ;
Dery, Hanan .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[37]   Magnetic field mixing and splitting of bright and dark excitons in monolayer MoSe2 [J].
Lu, Zhengguang ;
Rhodes, Daniel ;
Li, Zhipeng ;
Dinh Van Tuan ;
Jiang, Yuxuan ;
Ludwig, Jonathan ;
Jiang, Zhigang ;
Lian, Zhen ;
Shi, Su-Fei ;
Hone, James ;
Dery, Hanan ;
Smirnov, Dmitry .
2D MATERIALS, 2020, 7 (01)
[38]   Ultrafast Photoluminescence from Graphene [J].
Lui, Chun Hung ;
Mak, Kin Fai ;
Shan, Jie ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2010, 105 (12)
[39]   Breaking of Valley Degeneracy by Magnetic Field in Monolayer MoSe2 [J].
MacNeill, David ;
Heikes, Colin ;
Mak, Kin Fai ;
Anderson, Zachary ;
Kormanyos, Andor ;
Zolyomi, Viktor ;
Park, Jiwoong ;
Ralph, Daniel C. .
PHYSICAL REVIEW LETTERS, 2015, 114 (03)
[40]   Observation of Exciton-Exciton Interaction Mediated Valley Depolarization in Monolayer MoSe2 [J].
Mahmood, Fahad ;
Alpichshev, Zhanybek ;
Lee, Yi-Hsien ;
Kong, Jing ;
Gedik, Nuh .
NANO LETTERS, 2018, 18 (01) :223-228