Torsion matrices over commutative integral group rings

被引:1
作者
Lee, GT [1 ]
Sehgal, SK [1 ]
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
关键词
D O I
10.5565/PUBLMAT_44200_01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let ZA he the integral group ring of a finite abelian group A, and n a positive integer greater than 5. We provide conditions on n and A under under which every torsion matrix U, with identity augmentation, in GL(n)(ZA) is conjugate in GL(n)(QA) to a diagonal matrix with group elements on the diagonal. When A is infinite, we show that under similar conditions, U has a group trace and is stably conjugate to such a diagonal matrix.
引用
收藏
页码:359 / 367
页数:9
相关论文
共 9 条
[1]   TORSION UNITS IN INFINITE GROUP-RINGS [J].
BOVDI, A ;
MARCINIAK, Z ;
SEHGAL, SK .
JOURNAL OF NUMBER THEORY, 1994, 47 (03) :284-299
[2]   Bass conjecture and the group trace property [J].
Chadha, GK ;
Passi, IBS .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (02) :627-639
[3]   Finite groups of matrices over group rings [J].
Cliff, G ;
Weiss, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (01) :457-475
[4]  
LUTHAR IS, 1992, COMMUN ALGEBRA, V20, P1223
[5]   TORSION UNITS IN INTEGRAL GROUP-RINGS OF SOME METABELIAN-GROUPS .2. [J].
MARCINIAK, Z ;
RITTER, J ;
SEHGAL, SK ;
WEISS, A .
JOURNAL OF NUMBER THEORY, 1987, 25 (03) :340-352
[6]   Finite matrix groups over nilpotent group rings [J].
Marciniak, ZS ;
Sehgal, SK .
JOURNAL OF ALGEBRA, 1996, 181 (02) :565-583
[7]  
Marciniak ZS, 2000, J GROUP THEORY, V3, P67
[8]   Zassenhaus conjecture and infinite nilpotent groups [J].
Marciniak, ZS ;
Sehgal, SK .
JOURNAL OF ALGEBRA, 1996, 184 (01) :207-212
[9]  
SEGHAL SK, 1993, UNITS INTEGRAL GROUP