The considerable development effort of HTS magnetic bearings with respect to heavy loads is demonstrated. Radial type 200 mm bearing in an optimized design was developed for implementation in a new 5 kWh superconducting flywheel energy storage system. A prototype bearing, consisting of a modular assembled melt textured YBCO bulk 200 mm. hollow cylinder with permanent magnet rotor is presented. Axial rotor displacement causes pinning forces of 8 and 10 kN axially at a temperature of 78 K and 71 K, respectively. Maximum radial forces are 4.7 kN at sub- cooled LN2. Fabrication technology incorporates the construction and engineering of a low-weight, nonmagnetic G-10 bearing cryostat. Ultra-low heat transfer structural elements were designed and constructed to reduce the thermal loss through the support to less than 2 Watt under 1 ton load.