Autoregressive State Prediction Model Based on Hidden Markov and the Application

被引:3
|
作者
Zhao, Zhiguo [1 ]
Wang, Yeqin [1 ]
Feng, Mengqi [2 ]
Peng, Guangqin [2 ]
Liu, Jinguo [1 ]
Jason, Beth [3 ]
Tao, Yukai [1 ]
机构
[1] Huaiyin Inst Technol, Jiangsu Key Lab Traff & Transportat Secur, Huaian, Peoples R China
[2] Nanjing Tech Univ, Coll Mech & Power Engn, Nanjing, Jiangsu, Peoples R China
[3] West Virginia Univ, Coll Engn & Mineral Resources, Morgantown, WV USA
基金
中国国家自然科学基金;
关键词
Autoregressive model; Hidden Markov model; Prediction model; Rollover warning; Heavy vehicle;
D O I
10.1007/s11277-018-5259-7
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Considering the inaccuracies of the traditional Hidden Markov Model (HHM) in the dynamic processes that are close relatively related before and after characterization, an autoregressive state prediction model based on Hidden Markov with Autoregressive model and the coefficient of AR is proposed, which takes the coefficient of AR as the observations of the continuous HHM. Taking the recognition and prediction of heavy vehicle driving states as the research object, a two-layer HMM model is set up to describe the state of the whole steering process of the vehicle. The AR model is for the features extracting of the observations in a short period of time, and the coefficient of AR is extracted as the observed sequence of the lower HMM model library. The upper HMM is used to identify and predict the overall state of the vehicle during steering. The proposed model makes the state sequence with the highest probability on-line predicted in the observed sequence by the Viterbi algorithm, and calculates the state transition law to predict the state of the vehicle in a certain period of time in the future using the Markov prediction algorithm. Combining the double lane change and hook steering to train the parameters of the model, the online identification and prediction of heavy vehicle rollover states can be achieved. The results show that the proposed model can accurately identify the driving state of the vehicle with good real-time performance, and the good prediction on the trend of heavy vehicle driving conditions is verified.
引用
收藏
页码:2403 / 2416
页数:14
相关论文
共 50 条
  • [41] A Hidden Markov Model-Based Network Security Posture Prediction Model
    Yang X.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01):
  • [42] Modeling Dinophysis in Western Andalucia using a autoregressive hidden Markov model
    Aron, Jordan
    Albert, Paul S.
    Gribble, Matthew O.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2022, 29 (03) : 557 - 585
  • [43] Modeling Dinophysis in Western Andalucía using an autoregressive hidden Markov model
    Jordan Aron
    Paul S. Albert
    Matthew O. Gribble
    Environmental and Ecological Statistics, 2022, 29 : 557 - 585
  • [44] The Prediction of Human Genes in DNA Based on a Generalized Hidden Markov Model
    Guo, Rui
    Yan, Ke
    He, Wei
    Zhang, Jian
    BIOMETRIC RECOGNITION, 2016, 9967 : 747 - 755
  • [45] Fault diagnosis and prediction of complex system based on Hidden Markov model
    Li, Chen
    Wei, Fajie
    Wang, Cheng
    Zhou, Shenghan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (05) : 2937 - 2944
  • [46] Stock Market Prediction With Hidden Markov Model
    Farshchian, Maryam
    Jahan, Majid Vafaei
    SECOND INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK 2015), 2015, : 473 - 477
  • [47] A Hidden Markov Model for Route and Destination Prediction
    Lassoued, Yassine
    Monteil, Julien
    Gu, Yingqi
    Russo, Giovanni
    Shorten, Robert
    Mevissen, Martin
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [48] Hidden Markov Model based Spot price prediction for Cloud Computing
    Liu, Duan
    Cai, Zhicheng
    Li, Xiaoping
    2017 15TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS AND 2017 16TH IEEE INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS (ISPA/IUCC 2017), 2017, : 996 - 1003
  • [49] Hidden Markov Model-Based Cyberattack Prediction in Power Systems
    Zhang, Bo
    Liu, Xuan
    Zheng, Haofeng
    Song, Yufei
    IEEE TRANSACTIONS ON SMART GRID, 2025, 16 (02) : 1694 - 1705
  • [50] Attack Prediction using Hidden Markov Model
    Dass, Shuvalaxmi
    Datta, Prerit
    Namin, Akbar Siami
    2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 1695 - 1702