Autoregressive State Prediction Model Based on Hidden Markov and the Application

被引:3
|
作者
Zhao, Zhiguo [1 ]
Wang, Yeqin [1 ]
Feng, Mengqi [2 ]
Peng, Guangqin [2 ]
Liu, Jinguo [1 ]
Jason, Beth [3 ]
Tao, Yukai [1 ]
机构
[1] Huaiyin Inst Technol, Jiangsu Key Lab Traff & Transportat Secur, Huaian, Peoples R China
[2] Nanjing Tech Univ, Coll Mech & Power Engn, Nanjing, Jiangsu, Peoples R China
[3] West Virginia Univ, Coll Engn & Mineral Resources, Morgantown, WV USA
基金
中国国家自然科学基金;
关键词
Autoregressive model; Hidden Markov model; Prediction model; Rollover warning; Heavy vehicle;
D O I
10.1007/s11277-018-5259-7
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Considering the inaccuracies of the traditional Hidden Markov Model (HHM) in the dynamic processes that are close relatively related before and after characterization, an autoregressive state prediction model based on Hidden Markov with Autoregressive model and the coefficient of AR is proposed, which takes the coefficient of AR as the observations of the continuous HHM. Taking the recognition and prediction of heavy vehicle driving states as the research object, a two-layer HMM model is set up to describe the state of the whole steering process of the vehicle. The AR model is for the features extracting of the observations in a short period of time, and the coefficient of AR is extracted as the observed sequence of the lower HMM model library. The upper HMM is used to identify and predict the overall state of the vehicle during steering. The proposed model makes the state sequence with the highest probability on-line predicted in the observed sequence by the Viterbi algorithm, and calculates the state transition law to predict the state of the vehicle in a certain period of time in the future using the Markov prediction algorithm. Combining the double lane change and hook steering to train the parameters of the model, the online identification and prediction of heavy vehicle rollover states can be achieved. The results show that the proposed model can accurately identify the driving state of the vehicle with good real-time performance, and the good prediction on the trend of heavy vehicle driving conditions is verified.
引用
收藏
页码:2403 / 2416
页数:14
相关论文
共 50 条
  • [31] Hidden Markov model-based modeling and prediction for implied volatility surface
    Guo, Hongyue
    Deng, Qiqi
    Jia, Wenjuan
    Wang, Lidong
    Sui, Cong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 12381 - 12394
  • [32] Prediction of machine state for non-Gaussian degradation model using Hidden Markov Model approach
    Janczura, Joanna
    Zulawinski, Wojciech
    Shiri, Hamid
    Barszcz, Tomasz
    Zimroz, Radoslaw
    Wylomanska, Agnieszka
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2025, 27 (01):
  • [33] Hidden Markov Model for Cardholder Purchasing Pattern Prediction
    Otieno, Okoth Jeremiah
    Kimwele, Michael
    Ogada, Kennedy
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (07) : 547 - 559
  • [34] Stock Market Prediction Using Hidden Markov Model
    Somani, Poonam
    Talele, Shreyas
    Sawant, Suraj
    2014 IEEE 7TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC), 2014, : 89 - 92
  • [35] Spectrum Occupancy Prediction Using a Hidden Markov Model
    Eltom, Hamid
    Kandeepan, Sithamparanathan
    Moran, Bill
    Evans, Robin J.
    2015 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2015,
  • [36] A Method of State Recognition in Machining Process Based on Wavelet and Hidden Markov Model
    Xie, Fengyun
    INNOVATION AND SUSTAINABILITY OF MODERN RAILWAY, 2012, : 639 - 643
  • [37] Approach of measuring and predicting software system state based on hidden Markov model
    Wu J.
    Zeng W.-R.
    Chen H.-L.
    Tang X.-F.
    Ruan Jian Xue Bao/Journal of Software, 2016, 27 (12): : 3208 - 3222
  • [38] Partially Hidden Markov Chain Multivariate Linear Autoregressive model: inference and forecasting-application to machine health prognostics
    Dama, Fatoumata
    Sinoquet, Christine
    MACHINE LEARNING, 2023, 112 (01) : 45 - 97
  • [39] Prediction of coenzyme specificity in dehydrogenases/reductases - A hidden Markov model-based method and its application on complete genomes
    Kallberg, Y
    Persson, B
    FEBS JOURNAL, 2006, 273 (06) : 1177 - 1184
  • [40] AUTOREGRESSIVE VARIATIONAL AUTOENCODER WITH A HIDDEN SEMI-MARKOV MODEL-BASED STRUCTURED ATTENTION FOR SPEECH SYNTHESIS
    Fujimoto, Takato
    Hashimoto, Kei
    Nankaku, Yoshihiko
    Tokuda, Keiichi
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 7462 - 7466