Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress

被引:51
|
作者
Zhu, Xiancan [1 ]
Cao, Qingjun [2 ]
Sun, Luying [1 ]
Yang, Xiaoqin [1 ]
Yang, Wenying [1 ]
Zhang, Hua [1 ]
机构
[1] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun, Jilin, Peoples R China
[2] Jilin Acad Agr Sci, Changchun, Jilin, Peoples R China
来源
关键词
carbon isotope discrimination; stomatal aperture; stomatal conductance; stomatal density; water potential; CARBON-ISOTOPE DISCRIMINATION; LEAF GAS-EXCHANGE; SALT STRESS; POTATO LEAVES; SALINITY; PHOTOSYNTHESIS; PHOSPHORUS; WATER; SIZE; NITROGEN;
D O I
10.3389/fpls.2018.01363
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Stomata play a critical role in the regulation of gas exchange between the interior of the leaf and the exterior environment and are affected by environmental and endogenous stimuli. This study aimed to evaluate the effect of the arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis, on the stomatal behavior of wheat (Triticum aestivum L.) plants under combination with elevated CO2 and NaCl stress. Wheat seedlings were exposed to ambient (400 ppm) or elevated (700 ppm) CO2 concentrations and 0, 1, and 2 g kg(-1) dry soil NaCl treatments for 10 weeks. AM symbiosis increased the leaf area and stomatal density (SD) of the abaxial surface. Stomatal size and the aperture of adaxial and abaxial leaf surfaces were higher in the AM than non-AM plants under elevated CO2 and salinity stress. AM plants showed higher stomatal conductance (g(s)) and maximum rate of g(s) to water vapor (g(smax)) compared with non-AM plants. Moreover, leaf water potential (Psi)was increased and carbon isotope discrimination (Delta C-13) was decreased by AM colonization, and both were significantly associated with stomatal conductance. The results suggest that AM symbiosis alters stomatal morphology by changing SD and the size of the guard cells and stomatal pores, thereby improving the stomatal conductance and water relations of wheat leaves under combined elevated CO2 and salinity stress.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Responses in stomatal conductance to elevated CO2 in 12 grassland species that differ in growth form
    Knapp, AK
    Hamerlynck, EP
    Ham, JM
    Owensby, CE
    VEGETATIO, 1996, 125 (01): : 31 - 41
  • [42] Elevated atmospheric CO2 alleviates drought stress in wheat
    Wall, GW
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2001, 87 (03) : 261 - 271
  • [43] Carbon gain is coordinated with enhanced stomatal conductance and hydraulic architecture in coffee plants acclimated to elevated [CO2]: The interplay with irradiance supply
    de Oliveira, Ueliton S.
    de Souza, Antonio H.
    de Andrade, Moab T.
    Oliveira, Leonardo A.
    Gouvea, Debora G.
    Martins, Samuel C. V.
    Ramalho, Jose D. C.
    Cardoso, Amanda A.
    DaMatta, Fabio M.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 204
  • [44] Global metabolic changes induced by arbuscular mycorrhizal fungi in oregano plants grown under ambient and elevated levels of atmospheric CO2
    Saleh, Ahmed M.
    Abdel-Mawgoud, Mohamed
    Hassan, Ahmed R.
    Habeeb, Talaat H.
    Yehia, Ramy S.
    AbdElgawad, Hamada
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 151 : 255 - 263
  • [45] EFFECTS OF ARBUSCULAR MYCORRHIZAL FUNGI AND RHIZOBIUM ON PHOTOSYNTHETIC ACTIVITY AND GROWTH RESPONSE IN ACACIA AURICULIFORMIS SEEDLINGS UNDER ELEVATED CO2
    Karthikeyan, A.
    JOURNAL OF TROPICAL FOREST SCIENCE, 2019, 31 (04) : 398 - 403
  • [46] ABA-mediated modulation of elevated CO2 on stomatal response to drought
    Li, Shenglan
    Li, Xiangnan
    Wei, Zhenhua
    Liu, Fulai
    CURRENT OPINION IN PLANT BIOLOGY, 2020, 56 : 174 - 180
  • [47] Adaptive response of flavonoids in Robinia pseudoacacia L. affected by the contamination of cadmium and elevated CO2 to arbuscular mycorrhizal symbiosis
    Zhang, Chunyan
    Jia, Xia
    Zhao, Yonghua
    Wang, Lu
    Wang, Yunjie
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2023, 263
  • [48] Effect of the transgenerational exposure to elevated CO2 on the drought response of winter wheat: Stomatal control and water use efficiency
    Li, Yafei
    Li, Xiangnan
    Yu, Jingjie
    Liu, Fulai
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2017, 136 : 78 - 84
  • [49] Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis
    Auge, Robert M.
    Toler, Heather D.
    Saxton, Arnold M.
    FRONTIERS IN PLANT SCIENCE, 2014, 5
  • [50] Plant response to arbuscular mycorrhizal fungi at CO2 and temperature levels of the past and present
    André G. Duarte
    Hafiz Maherali
    Symbiosis, 2023, 89 : 307 - 317