Synthetic Multifunctional Graphene Composites with Reshaping and Self-Healing Features via a Facile Biomineralization-Inspired Process

被引:86
作者
Lin, Shuyuan [1 ]
Zhong, Yujia [1 ]
Zhao, Xuanliang [1 ]
Sawada, Toshiki [2 ]
Li, Xinming [3 ]
Lei, Wenhai [4 ]
Wang, Moran [4 ]
Serizawa, Takeshi [2 ]
Zhu, Hongwei [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Tokyo Inst Technol, Sch Mat & Chem Technol, Dept Chem Sci & Engn, Tokyo 1528550, Japan
[3] NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[4] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
基金
北京市自然科学基金;
关键词
biomineralization; gel-like; graphene; reshaping; self-healing; AMORPHOUS CALCIUM-CARBONATE; OXIDE; FIBER; FUNCTIONALIZATION; HYDROGELS; SENSORS; NACRE; FILMS;
D O I
10.1002/adma.201803004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Since graphene is a type of 2D carbon material with excellent mechanical, electrical, thermal, and optical properties, the efficient preparation of graphene macroscopic assemblies is significant in the potentially large-scale application of graphene sheets. Conventional preparation methods of graphene macroscopic assemblies need strict conditions, and, once formed, the assemblies cannot be edited, reshaped, or recycled. Herein, inspired by the biomineralization process, a feasible approach of shapeable, multimanipulatable, and recyclable gel-like composite consisting of graphene oxide/poly(acrylic acid)/amorphous calcium carbonate (GO-PAA-ACC) is designed. This GO-PAA-ACC material can be facilely synthesized at room temperature with a cross-linking network structure formed during the preparation process. Remarkably, it is stretchable, malleable, self-healable, and easy to process in the wet state, but tough and rigid in the dried state. In addition, these two states can be readily switched by adjusting the water content, which shows recyclability and can be used for 3D printing to form varied architectures. Furthermore, GO-PAA-ACC can be functionalized or processed to meet a variety of specific application requirements (e.g., energy-storage, actuators). The preparation method of GO-PAA-ACC composite in this work also provides a novel strategy for the versatile macroscopic assembly of other materials, which is low-cost, efficient, and convenient for broad application.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization [J].
Addadi, L ;
Raz, S ;
Weiner, S .
ADVANCED MATERIALS, 2003, 15 (12) :959-970
[2]  
[Anonymous], 2010, ANGEW CHEMIE, DOI DOI 10.1002/ANGE.201000270
[3]   Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites [J].
Boland, Conor S. ;
Khan, Umar ;
Ryan, Gavin ;
Barwich, Sebastian ;
Charifou, Romina ;
Harvey, Andrew ;
Backes, Claudia ;
Li, Zheling ;
Ferreira, Mauro S. ;
Mobius, Matthias E. ;
Young, Robert J. ;
Coleman, Jonathan N. .
SCIENCE, 2016, 354 (6317) :1257-1260
[4]   Multiple Hydrogen Bonding Enables the Self-Healing of Sensors for Human-Machine Interactions [J].
Cao, Jie ;
Lu, Canhui ;
Zhuang, Jian ;
Liu, Manxiao ;
Zhang, Xinxing ;
Yu, Yanmei ;
Tao, Qingchuan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (30) :8795-8800
[5]   Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications [J].
Chen, Da ;
Feng, Hongbin ;
Li, Jinghong .
CHEMICAL REVIEWS, 2012, 112 (11) :6027-6053
[6]   Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures [J].
Chen, Zefeng ;
Wang, Zhao ;
Li, Xinming ;
Lin, Yuxuan ;
Luo, Ningqi ;
Long, Mingzhu ;
Zhao, Ni ;
Xu, Jian-Bin .
ACS NANO, 2017, 11 (05) :4507-4513
[7]   Synergistic Effects of Plasmonics and Electron Trapping in Graphene Short-Wave Infrared Photodetectors with Ultrahigh Responsivity [J].
Chen, Zefeng ;
Li, Xinming ;
Wang, Jiaqi ;
Tao, Li ;
Long, Mingzhu ;
Liang, Shi-Jun ;
Ang, Lay Kee ;
Shu, Chester ;
Tsang, Hon Ki ;
Xu, Jian-Bin .
ACS NANO, 2017, 11 (01) :430-437
[8]   Self-Healing Graphene Oxide Based Functional Architectures Triggered by Moisture [J].
Cheng, Huhu ;
Huang, Yaxin ;
Cheng, Qilong ;
Shi, Gaoquan ;
Jiang, Lan ;
Qu, Liangti .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (42)
[9]   Free-Standing, Multilayered Graphene/Polyaniline-Glue/Graphene Nanostructures for Flexible, Solid-State Electrochemical Capacitor Application [J].
Choi, Hojin ;
Ahn, Ki-Jin ;
Lee, Younghee ;
Noh, Seonmyeong ;
Yoon, Hyeonseok .
ADVANCED MATERIALS INTERFACES, 2015, 2 (12)
[10]  
Deng Z., 2018, CHEM MATER, V30, P1792