Maximum Likelihood Estimation Methods for Copula Models

被引:7
|
作者
Zhang, Jinyu [1 ]
Gao, Kang [2 ]
Li, Yong [2 ]
Zhang, Qiaosen [3 ]
机构
[1] Nanjing Audit Univ, Sch Finance, Nanjing 210096, Peoples R China
[2] Renmin Univ China, Sch Econ, Beijing 100872, Peoples R China
[3] Renmin Univ China, Hanqing Adv Inst Econ & Finance, Beijing 100872, Peoples R China
关键词
Copula; Multi-modality; Simulated annealing; Parameter estimation; GLOBAL OPTIMIZATION;
D O I
10.1007/s10614-021-10139-0
中图分类号
F [经济];
学科分类号
02 ;
摘要
For Copula models, the likelihood function could be multi-modal, and some traditional optimization algorithms such as simulated annealing (SA) may get stuck in the local mode and introduce bias in parameter estimation. To address this issue, we consider three widely used global optimization approaches, including sequential Monte Carlo simulated annealing (SMC-SA), sequential qudratic programming and generalized simulated annealing, in the estimation of bivariate and R-vine Copula models. Then the accuracy and effectiveness of these algorithms are compared in simulation studies, and we find that SMC-SA provides more robust estimation than SA both for bivariate and R-vine Copulas. Finally, we apply these approaches in real data as well as a large multivariate case for portfolio risk management, and find that SMC-SA performs better than SA in both fitting the data and predicting portfolio risk.
引用
收藏
页码:99 / 124
页数:26
相关论文
共 50 条
  • [41] Maximum-likelihood parameter estimation of bilinear systems
    Gibson, S
    Wills, A
    Ninness, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) : 1581 - 1596
  • [42] Maximum Likelihood Frequency Estimation in Smart Grid Applications
    Choqueuse, Vincent
    Elbouchikhi, Elhoussin
    Benbouzid, Mohamed
    2015 IEEE 24TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2015, : 1339 - 1344
  • [43] Implementing and evaluating the nested maximum likelihood estimation technique
    Cousineau, Denis
    TUTORIALS IN QUANTITATIVE METHODS FOR PSYCHOLOGY, 2007, 3 (01): : 8 - 13
  • [44] Maximum-likelihood estimation of Rician distribution parameters
    Sijbers, J
    den Dekker, AJ
    Scheunders, P
    Van Dyck, D
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (03) : 357 - 361
  • [45] Parameter estimation using polynomial chaos and maximum likelihood
    Chen-Charpentier, Benito
    Stanescu, Dan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (02) : 336 - 346
  • [46] Maximum Likelihood Estimation for Mixed Fractional Vasicek Processes
    Cai, Chun-Hao
    Huang, Yin-Zhong
    Sun, Lin
    Xiao, Wei-Lin
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [47] Maximum likelihood estimation for small noise multiscale diffusions
    Spiliopoulos K.
    Chronopoulou A.
    Statistical Inference for Stochastic Processes, 2013, 16 (3) : 237 - 266
  • [48] Maximum likelihood estimation of linear SISO models subject to missing output data and missing input data
    Wallin, Ragnar
    Hansson, Anders
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (11) : 2354 - 2364
  • [49] A Continuation Technique for Maximum Likelihood Estimators in Biological Models
    Cassidy, Tyler
    BULLETIN OF MATHEMATICAL BIOLOGY, 2023, 85 (10)
  • [50] Simulated Pseudo Maximum Likelihood Identification of Nonlinear Models
    Abdalmoaty, Mohamed Rasheed
    Hjalmarsson, Hakan
    IFAC PAPERSONLINE, 2017, 50 (01): : 14058 - 14063