Extra-low thermal conductivity in unfilled CoSb3-δ skutterudite synthesized under high-pressure conditions

被引:23
作者
Prado-Gonjal, J. [1 ]
Serrano-Sanchez, F. [1 ]
Nemes, N. M. [2 ]
Dura, O. J. [3 ]
Martinez, J. L. [1 ,4 ]
Fernandez-Diaz, M. T. [5 ]
Fauth, F. [6 ]
Alonso, J. A. [1 ]
机构
[1] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[2] Univ Complutense Madrid, Dept Fis Mat, E-28040 Madrid, Spain
[3] Univ Castilla La Mancha, Dept Fis Aplicada, E-13071 Ciudad Real, Spain
[4] ESS Bilbao, Pol Ugaldeguren 3,Pol A-7B, Zamudio 48170, Spain
[5] Inst Laue Langevin, BP 156X, F-38042 Grenoble, France
[6] CELLS ALBA Synchrotron, E-08290 Barcelona, Spain
关键词
THERMOELECTRIC PROPERTIES; POINT-DEFECT; COSB3; SEMICONDUCTOR; ANTIMONIDES; SCATTERING; FIGURE; MERIT;
D O I
10.1063/1.4993283
中图分类号
O59 [应用物理学];
学科分类号
摘要
Thermoelectric CoSb3-delta skutterudite was synthesized and sintered in one step under high-pressure conditions at 3.5 GPa in a piston-cylinder hydrostatic press. Structural analysis carried out from synchrotron x-ray powder diffraction data reveals a significant Sb deficiency in this material. The introduction of point defects in the form of Sb vacancies distributed at random in the structure leads to an impressive reduction (> 50%) of the total thermal conductivity, kappa, which is one of the main ingredients of good thermoelectric materials. This suggests phonon scattering effects originated in the Sb defects, which drives to a better improvement in kappa than that achieved by the conventional strategy of filling the cages of the skutterudite structure with rare earths or other heavy cations. In parallel, changes in the electronic band structure caused by point variation of the stoichiometry produce an undesired increment in the electrical resistivity. Nevertheless, the low thermal conductivity combined with a high Seebeck coefficient (-434 mu VK-1 at 500 K) originates a relatively large figure of merit (ZT = 0.12 at 550 K) for CoSb2.90(2). (C) 2017 Author(s).
引用
收藏
页数:5
相关论文
共 50 条
[1]   Crystal structures, atomic vibration, and disorder of the type-I thermoelectric clathrates Ba8Ga16Si30, Ba8Ga16Ge30, Ba8In16Ge30, and Sr8Ga16Ge30 -: art. no. 144107 [J].
Bentien, A ;
Nishibori, E ;
Paschen, S ;
Iversen, BB .
PHYSICAL REVIEW B, 2005, 71 (14)
[2]   Nanostructured Co1-xNixSb3 skutterudites:: Synthesis, thermoelectric properties, and theoretical modeling [J].
Bertini, L ;
Stiewe, C ;
Toprak, M ;
Williams, S ;
Platzek, D ;
Mrotzek, A ;
Zhang, Y ;
Gatti, C ;
Müller, E ;
Muhammed, M ;
Rowe, M .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (01) :438-447
[3]   High-pressure synthesized materials: treasures and hints [J].
Brazhkin, V. V. .
HIGH PRESSURE RESEARCH, 2007, 27 (03) :333-351
[4]  
Caillat T., 1994, AIP C P, V316, P58, DOI DOI 10.1063/1.46835)
[5]   Nanostructured thermoelectric materials: Current research and future challenge [J].
Chen, Zhi-Gang ;
Han, Guang ;
Yang, Lei ;
Cheng, Lina ;
Zou, Jin .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2012, 22 (06) :535-549
[6]   The crystallography stations at the Alba synchrotron [J].
Fauth, Francois ;
Boer, Roeland ;
Gil-Ortiz, Fernando ;
Popescu, Catalin ;
Vallcorba, Oriol ;
Peral, Inma ;
Fulla, Daniel ;
Benach, Jordi ;
Juanhuix, Jordi .
EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (08)
[7]   Estimation of the thermal band gap of a semiconductor from Seebeck measurements [J].
Goldsmid, HJ ;
Sharp, JW .
JOURNAL OF ELECTRONIC MATERIALS, 1999, 28 (07) :869-872
[8]   Thermal conductivity of skutterudite CoSb3 from first principles: Substitution and nanoengineering effects [J].
Guo, Ruiqiang ;
Wang, Xinjiang ;
Huang, Baoling .
SCIENTIFIC REPORTS, 2015, 5
[9]  
Hewat A. W., 1973, 73239 HARW
[10]   Thermoelectric properties of CoSb3 [J].
Kawaharada, Y ;
Kuroaski, K ;
Uno, M ;
Yamanaka, S .
JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 315 (1-2) :193-197