Existence and multiplicity of radial solutions for a k-Hessian system

被引:14
|
作者
Yang, Zedong [1 ]
Bai, Zhanbing [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
k-Hessian system; Existence; Multiplicity; Cone; Fixed point theorem; ELLIPTIC-EQUATIONS;
D O I
10.1016/j.jmaa.2022.126159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonlinear k-Hessian system {S-k (sigma (D(2)z(1))) = lambda b(vertical bar x vertical bar)phi(-z(1), -z(2)), in Omega, S-k (sigma (D(2)z(2))) = mu h(vertical bar x vertical bar)psi(-z(1), -z(2)), in Omega, z(1) = z(2) = 0, on partial derivative Omega, where lambda, mu > 0, Omega stands for the open unit ball in R-N and S-k(sigma(D(2)z)) is the k-Hessian operator of z. Under the appropriate assumptions on phi and psi, the existence and multiplicity of the k-convex radial solutions are obtained. The method of proving theorems is the Guo-Krasnosel'skii fixed point theorem in a cone. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Existence of radial solutions for k-Hessian system
    Gao, Hongliang
    Wang, Liyuan
    Li, Jiemei
    AIMS MATHEMATICS, 2023, 8 (11): : 26498 - 26514
  • [2] The existence and multiplicity of k-convex solutions for a coupled k-Hessian system
    Gao, Chenghua
    He, Xingyue
    Wang, Jingjing
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2615 - 2628
  • [3] Existence and multiplicity for negative solutions of k-Hessian equations
    Wei, Wei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 615 - 640
  • [4] The existence and multiplicity of k-convex solutions for a coupled k-Hessian system
    Chenghua Gao
    Xingyue He
    Jingjing Wang
    Acta Mathematica Scientia, 2023, 43 : 2615 - 2628
  • [5] THE EXISTENCE AND MULTIPLICITY OF k-CONVEX SOLUTIONS FOR A COUPLED k-HESSIAN SYSTEM
    高承华
    何兴玥
    王晶晶
    Acta Mathematica Scientia, 2023, 43 (06) : 2615 - 2628
  • [6] Existence of radial solutions to biharmonic k-Hessian equations
    Escudero, Carlos
    Torres, Pedro J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) : 2732 - 2761
  • [7] On the existence of radial solutions to a nonlinear k-Hessian system with gradient term
    Wang, Guotao
    Zhang, Zhuobin
    Ahmad, Bashir
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 82
  • [8] Existence and uniqueness of nontrivial radial solutions for k-Hessian equations
    Zhang, Xuemei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (01)
  • [9] Multiplicity of k-convex solutions for a singular k-Hessian system
    Yang, Zedong
    Bai, Zhanbing
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [10] Existence and multiplicity of radially symmetric k-admissible solutions for a k-Hessian equation
    Miao, Liangying
    He, Zhiqian
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)