Cysteine scanning mutagenesis and disulfide mapping studies of the TatA component of the bacterial twin arginine translocase

被引:42
作者
Greene, Nicholas P.
Porcelli, Ida
Buchanan, Grant
Hicks, Matthew G.
Schermann, Sonya M.
Palmer, Tracy
Berks, Ben C.
机构
[1] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
[2] John Innes Inst, Dept Mol Microbiol, Norwich NR4 7UH, Norfolk, England
[3] Univ E Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England
基金
英国医学研究理事会;
关键词
D O I
10.1074/jbc.M702972200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Tat (twin arginine translocation) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. The integral membrane proteins TatA, TatB, and TatC are essential components of the Tat pathway. TatA forms high order oligomers and is thought to constitute the protein-translocating unit of the Tat system. Cysteine scanning mutagenesis was used to systematically investigate the functional importance of residues in the essential N-terminal transmembrane and amphipathic helices of Escherichia coli TatA. Cysteine substitutions of most residues in the amphipathic helix, including all the residues on the hydrophobic face of the helix, severely compromise Tat function. Glutamine 8 was identified as the only residue in the transmembrane helix that is critical for TatA function. The cysteine variants in the transmembrane helix were used in disulfide mapping experiments to probe the oligomeric arrangement of TatA protomers within the larger TatA complex. Residues in the center of the transmembrane helix (including residues 10-16) show a distinct pattern of cross-linking indicating that this region of the protein forms well defined interactions with other protomers. At least two interacting faces were detected. The results of our TatA studies are compared with analogous data for the homologous, but functionally distinct, TatB protein. This comparison reveals that it is only in TatA that the amphipathic helix is sensitive to amino acid substitutions. The TatA amphipathic helix may play a role in forming and controlling the path of substrate movement across the membrane.
引用
收藏
页码:23937 / 23945
页数:9
相关论文
共 45 条
[1]   Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli [J].
Alami, M ;
Lüke, I ;
Deitermann, S ;
Eisner, G ;
Koch, HG ;
Brunner, J ;
Müller, M .
MOLECULAR CELL, 2003, 12 (04) :937-946
[2]  
[Anonymous], 2001, LAB MANUAL
[3]   Evidence for interactions between domains of TatA and TatB from mutagenesis of the TatABC subunits of the twin-arginine translocase [J].
Barrett, CML ;
Robinson, C .
FEBS JOURNAL, 2005, 272 (09) :2261-2275
[4]   Identification of key regions within the Escherichia coli TatAB subunits [J].
Barrett, CML ;
Mathers, JE ;
Robinson, C .
FEBS LETTERS, 2003, 537 (1-3) :42-46
[5]   Protein targeting by the bacterial twin-arginine translocation (Tat) pathway [J].
Berks, BC ;
Palmer, T ;
Sargent, F .
CURRENT OPINION IN MICROBIOLOGY, 2005, 8 (02) :174-181
[6]   The Tat protein translocation pathway and its role in microbial physiology [J].
Berks, BC ;
Palmer, T ;
Sargent, F .
ADVANCES IN MICROBIAL PHYSIOLOGY, VOL 47, 2003, 47 :187-254
[7]   Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB [J].
Blaudeck, N ;
Kreutzenbeck, P ;
Müller, M ;
Sprenger, GA ;
Freudl, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (05) :3426-3432
[8]   An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria [J].
Bogsch, EG ;
Sargent, F ;
Stanley, NR ;
Berks, BC ;
Robinson, C ;
Palmer, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (29) :18003-18006
[9]   TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli [J].
Bolhuis, A ;
Mathers, JE ;
Thomas, JD ;
Barrett, CML ;
Robinson, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :20213-20219
[10]   Hypothesis-review -: An alternative model of the twin arginine translocation system [J].
Brüser, T ;
Sanders, C .
MICROBIOLOGICAL RESEARCH, 2003, 158 (01) :7-17