Affine Processes on Symmetric Cones

被引:13
作者
Cuchiero, Christa [1 ]
Keller-Ressel, Martin [2 ]
Mayerhofer, Eberhard [3 ]
Teichmann, Josef [4 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Tech Univ Dresden, Inst Math Stochast, D-01062 Dresden, Germany
[3] Dublin City Univ, Dublin 9, Ireland
[4] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
Affine processes; Symmetric cones; Non-central Wishart distribution; Wishart processes; DIFFUSIONS; MATRICES; ALGEBRA; SPACE;
D O I
10.1007/s10959-014-0580-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider affine Markov processes taking values in convex cones. In particular, we characterize all affine processes taking values in irreducible symmetric cones in terms of certain L,vy-Khintchine triplets. This is the natural, coordinate-free formulation of the theory of Wishart processes on positive semidefinite matrices, as put forward by Bru (J Theor Probab 4(4):725-751, 1991) and Cuchiero et al. (Ann Appl Probab 21(2):397-463, 2011), in the more general context of symmetric cones, which also allows for simpler, alternative proofs.
引用
收藏
页码:359 / 422
页数:64
相关论文
共 50 条
[41]   Self-scaled barrier functions on symmetric cones and their classification [J].
Hauser, RA ;
Güler, O .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2002, 2 (02) :121-143
[42]   The Matsumoto-Yor Property and Its Converse on Symmetric Cones [J].
Kolodziejek, Bartosz .
JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (02) :624-638
[43]   Credit risk modeling with affine processes [J].
Duffie, D .
JOURNAL OF BANKING & FINANCE, 2005, 29 (11) :2751-2802
[44]   Holomorphic transforms with application to affine processes [J].
Belomestny, Denis ;
Kampen, Joerg ;
Schoenmakers, John .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (04) :1222-1250
[45]   Markov-modulated affine processes [J].
Kurt, Kevin ;
Frey, Rudiger .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 153 :391-422
[46]   Time-inhomogeneous affine processes [J].
Filipovic, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (04) :639-659
[47]   Markovian lifts of positive semidefinite affine Volterra-type processes [J].
Cuchiero, Christa ;
Teichmann, Josef .
DECISIONS IN ECONOMICS AND FINANCE, 2019, 42 (02) :407-448
[48]   Markovian lifts of positive semidefinite affine Volterra-type processes [J].
Christa Cuchiero ;
Josef Teichmann .
Decisions in Economics and Finance, 2019, 42 :407-448
[50]   The Lukacs–Olkin–Rubin Theorem on Symmetric Cones Without Invariance of the “Quotient” [J].
Bartosz Kołodziejek .
Journal of Theoretical Probability, 2016, 29 :550-568