Affine Processes on Symmetric Cones

被引:13
作者
Cuchiero, Christa [1 ]
Keller-Ressel, Martin [2 ]
Mayerhofer, Eberhard [3 ]
Teichmann, Josef [4 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Tech Univ Dresden, Inst Math Stochast, D-01062 Dresden, Germany
[3] Dublin City Univ, Dublin 9, Ireland
[4] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
Affine processes; Symmetric cones; Non-central Wishart distribution; Wishart processes; DIFFUSIONS; MATRICES; ALGEBRA; SPACE;
D O I
10.1007/s10959-014-0580-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider affine Markov processes taking values in convex cones. In particular, we characterize all affine processes taking values in irreducible symmetric cones in terms of certain L,vy-Khintchine triplets. This is the natural, coordinate-free formulation of the theory of Wishart processes on positive semidefinite matrices, as put forward by Bru (J Theor Probab 4(4):725-751, 1991) and Cuchiero et al. (Ann Appl Probab 21(2):397-463, 2011), in the more general context of symmetric cones, which also allows for simpler, alternative proofs.
引用
收藏
页码:359 / 422
页数:64
相关论文
共 50 条
[21]   On transformations and determinants of Wishart variables on symmetric cones [J].
Massam, H ;
Neher, E .
JOURNAL OF THEORETICAL PROBABILITY, 1997, 10 (04) :867-902
[22]   Multiplicative Cauchy functional equation on symmetric cones [J].
Kolodziejek, Bartosz .
AEQUATIONES MATHEMATICAE, 2015, 89 (04) :1075-1094
[23]   Exponentially affine martingales, affine measure changes and exponential moments of affine processes [J].
Kallsen, Jan ;
Muhle-Karbe, Johannes .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (02) :163-181
[24]   Infinite dimensional affine processes [J].
Schnaidt, Thorsten ;
Tappe, Stefan ;
Yu, Weijun .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (12) :7131-7169
[25]   An order inequality characterizing invariant barycenters on symmetric cones [J].
Kim, Sejong ;
Lee, Hosoo ;
Lim, Yongdo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (01) :1-16
[26]   A CHARACTERIZATION OF SYMMETRIC CONES BY THE DEGREES OF BASIC RELATIVE INVARIANTS [J].
Yamasaki, Takashi ;
Nomura, Takaaki .
KYUSHU JOURNAL OF MATHEMATICS, 2016, 70 (02) :237-257
[27]   Self-scaled barriers for irreducible symmetric cones [J].
Hauser, RA ;
Lim, YD .
SIAM JOURNAL ON OPTIMIZATION, 2002, 12 (03) :715-723
[28]   Horofunction compactifications of symmetric cones under Finsler distances [J].
Lemmens, Bas .
ANNALES FENNICI MATHEMATICI, 2023, 48 (02) :729-756
[29]   Clarke Generalized Jacobian of the Projection onto Symmetric Cones [J].
Kong, Lingchen ;
Tuncel, Levent ;
Xiu, Naihua .
SET-VALUED AND VARIATIONAL ANALYSIS, 2009, 17 (02) :135-151
[30]   The Matsumoto–Yor Property and Its Converse on Symmetric Cones [J].
Bartosz Kołodziejek .
Journal of Theoretical Probability, 2017, 30 :624-638