Affine Processes on Symmetric Cones

被引:13
作者
Cuchiero, Christa [1 ]
Keller-Ressel, Martin [2 ]
Mayerhofer, Eberhard [3 ]
Teichmann, Josef [4 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Tech Univ Dresden, Inst Math Stochast, D-01062 Dresden, Germany
[3] Dublin City Univ, Dublin 9, Ireland
[4] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
Affine processes; Symmetric cones; Non-central Wishart distribution; Wishart processes; DIFFUSIONS; MATRICES; ALGEBRA; SPACE;
D O I
10.1007/s10959-014-0580-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider affine Markov processes taking values in convex cones. In particular, we characterize all affine processes taking values in irreducible symmetric cones in terms of certain L,vy-Khintchine triplets. This is the natural, coordinate-free formulation of the theory of Wishart processes on positive semidefinite matrices, as put forward by Bru (J Theor Probab 4(4):725-751, 1991) and Cuchiero et al. (Ann Appl Probab 21(2):397-463, 2011), in the more general context of symmetric cones, which also allows for simpler, alternative proofs.
引用
收藏
页码:359 / 422
页数:64
相关论文
共 50 条
  • [1] Affine Processes on Symmetric Cones
    Christa Cuchiero
    Martin Keller-Ressel
    Eberhard Mayerhofer
    Josef Teichmann
    Journal of Theoretical Probability, 2016, 29 : 359 - 422
  • [2] Geometric ergodicity of affine processes on cones
    Mayerhofer, Eberhard
    Stelzer, Robert
    Vestweber, Johanna
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) : 4141 - 4173
  • [3] Characterization of beta distribution on symmetric cones
    Kolodziejek, Bartosz
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 414 - 423
  • [4] ON WISHART AND NONCENTRAL WISHART DISTRIBUTIONS ON SYMMETRIC CONES
    Mayerhofer, Eberhard
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (10) : 7093 - 7109
  • [5] Contractions of angles in symmetric cones
    Koufany, K
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2002, 38 (02) : 227 - 243
  • [6] Affine processes with compact state space
    Kruhner, Paul
    Larsson, Martin
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [7] AFFINE PROCESSES ON POSITIVE SEMIDEFINITE MATRICES
    Cuchiero, Christa
    Filipovic, Damir
    Mayerhofer, Eberhard
    Teichmann, Josef
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (02) : 397 - 463
  • [8] Penalized complementarity functions on symmetric cones
    Sangho Kum
    Yongdo Lim
    Journal of Global Optimization, 2010, 46 : 475 - 485
  • [9] Penalized complementarity functions on symmetric cones
    Kum, Sangho
    Lim, Yongdo
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (03) : 475 - 485
  • [10] Invariant differential operators on symmetric cones and Hermitian symmetric spaces
    Zhang, G
    ACTA APPLICANDAE MATHEMATICAE, 2002, 73 (1-2) : 79 - 94