Integratable high linearity compact waveguide coupled tapered InGaAsP photodetectors

被引:7
作者
Agashe, Shashank S. [1 ]
Shiu, Kuen-Ting
Forrest, Stephen R.
机构
[1] Princeton Univ, Dept Elect Engn, PRISM, Princeton, NJ 08544 USA
[2] Infinera Corp, Sunnyvale, CA 94085 USA
[3] Univ Michigan, Dept Elect Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Comp Sci & Phys, Ann Arbor, MI 48109 USA
关键词
bulk; highpower; optical integration; photodiodes; quantum well (QW); I-N PHOTODIODE; QUANTUM-WELL STRUCTURES; HIGH-POWER PERFORMANCE; HIGH-SPEED; HIGH-RESPONSIVITY; ABSORPTION; BANDWIDTH; NONLINEARITIES; LIMITATIONS; TECHNOLOGY;
D O I
10.1109/JQE.2007.897927
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate high linear response tapered photodiodes; composed of bulk and multiquantum-well absorption layers based on the integratable asymmetric twin waveguide architecture. The tapered shape reduces space-charge induced nonlinearities, enhancing the saturation current densities at high input optical powers. The 1-dB compression current density for an InGaAsP bulk active layer photodiode (BPD) is in excess of (2.8 +/- 0.3) kA/cm(2), compared to quantum-well photodiodes (QWPD) in the same materials system that saturate at (1.2 +/- 0.1) kA/cm(2). We find that the limited density of states of QWPDs leads to the early onset of current saturation. The BPD has a polarization sensitivity of S-Pol = (1.0 +/- 0.5) dB and responi sivity R = (0.3 +/- 0.03) A/W at a wavelength of 1.55 mu m, whereas the QWPD has S-Pol = (7 +/- 1) dB and R = (0.55 +/- 0.05) A/W, while both have a bandwidth of (11 +/- 1) GHz.
引用
收藏
页码:597 / 606
页数:10
相关论文
共 33 条
[1]  
Adachi S., 1992, PHYS PROPERTIES 3 5
[2]   Integratable high linearity and. high bandwidth compact tapered photodetector [J].
Agashe, S. S. ;
Shiu, K. -T. ;
Forrest, S. R. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (21-24) :2635-2637
[3]   Compact polarization-insensitive InGaAsP-InP 2x2 optical switch [J].
Agashe, SS ;
Shiu, KT ;
Forrest, SR .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (01) :52-54
[4]   A monolithically integrated long-wavelength balanced photodiode using asymmetric twin-waveguide technology [J].
Agashe, SS ;
Datta, S ;
Xia, F ;
Forrest, SR .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (01) :236-238
[5]   InP-Based waveguide-integrated photodetector with 100-GHz bandwidth [J].
Bach, HG ;
Beling, A ;
Mekonnen, GG ;
Kunkel, R ;
Schmidt, D ;
Ebert, W ;
Seeger, A ;
Stollberg, M ;
Schlaak, W .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2004, 10 (04) :668-672
[6]   Miniaturized waveguide-integrated p-i-n photodetector with 120-GHz bandwidth and high responsivity [J].
Beling, A ;
Bach, HG ;
Mekonnen, GG ;
Kunkel, R ;
Schmidt, D .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (10) :2152-2154
[7]  
Chuang SL., 2009, Physics of Photonic Devices. Wiley Series in Pure and Applied Optics, V2
[8]  
Coldren L. A., 2012, Diode lasers and photonic integrated circuits
[9]   Analysis of partially depleted absorber waveguide photodiodes [J].
Demiguel, S ;
Li, XW ;
Li, N ;
Chen, H ;
Campbell, JC ;
Wei, J ;
Anselm, A .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (08) :2505-2512
[10]   NUMERICAL-SIMULATION OF THE NONLINEAR RESPONSE OF A P-I-N PHOTODIODE UNDER HIGH ILLUMINATION [J].
DENTAN, M ;
DECREMOUX, B .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1990, 8 (08) :1137-1144