Effects of Low-Carbohydrate Diet and Exercise Training on Gut Microbiota

被引:16
作者
Sun, Shengyan [1 ]
Lei, On Kei [2 ]
Nie, Jinlei [3 ]
Shi, Qingde [3 ]
Xu, Yuming [4 ]
Kong, Zhaowei [2 ]
机构
[1] Huzhou Univ, Inst Phys Educ, Huzhou, Peoples R China
[2] Univ Macau, Fac Educ, Macau, Macao, Peoples R China
[3] Macao Polytech Univ, Fac Hlth Sci & Sports, Macau, Macao, Peoples R China
[4] Hangzhou Normal Univ, Coll Phys Educ, Hangzhou, Peoples R China
来源
FRONTIERS IN NUTRITION | 2022年 / 9卷
关键词
ketogenic diet; high-intensity interval training; moderate-intensity continuous training; microbiome; obesity; KETOGENIC DIET; BLOOD-PRESSURE; WEIGHT-LOSS; FAT; INSULIN; CAPACITY; CHILDREN; MICE;
D O I
10.3389/fnut.2022.884550
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
ObjectiveThis study was aimed to evaluate the effects of low-carbohydrate diet (LC) and incorporated high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) on gut microbiota, and the associations between changes in gut microbiota and cardiometabolic health-related profiles. MethodsFifty overweight/obese Chinese females (age 22.2 +/- 3.3 years, body mass index 25.1 +/- 3.1 kg/m(-2)) were randomized to the groups of LC, LC and HIIT (LC-HIIT, 10 repetitions of 6-s sprints and 9-s rest), and LC and MICT group (LC-MICT, cycling at 50-60% V?O-2peak for 30 min). The LC-HIIT and LC-MICT experienced 20 training sessions over 4 weeks. ResultsThe 4-week LC intervention with/without additional training failed to change the Shannon, Chao 1, and Simpson indexes (p > 0.05), LC increased Phascolarctobacterium genus, and LC-HIIT reduced Bifidobacterium genus after intervention (p < 0.05). Groups with extra exercise training increased short-chain fatty acid-producing Blautia genus (p < 0.05) and reduced type 2 diabetes-related genus Alistipes (p < 0.05) compared to LC. Sutterella (r = -0.335) and Enterobacter (r = 0.334) were associated with changes in body composition (p < 0.05). Changes in Ruminococcus, Eubacterium, and Roseburia genera were positively associated with blood pressure (BP) changes (r = 0.392-0.445, p < 0.05), whereas the changes in Bacteroides, Faecalibacterium, and Parabacteroides genera were negatively associated with BP changes (r = -0.567 to -0.362, p < 0.05). ConclusionLC intervention did not change the alpha-diversity and overall structure of gut microbiota. Combining LC with exercise training may have additional benefits on gut physiology. Specific microbial genera were associated with LC- and exercise-induced regulation of cardiometabolic health.
引用
收藏
页数:10
相关论文
共 51 条
[1]  
Allen JM, 2018, MED SCI SPORT EXER, V50, P747, DOI [10.1249/MSS.0000000000001495, 10.1249/mss.0000000000001495]
[2]   The gut microbiota as an environmental factor that regulates fat storage [J].
Bäckhed, F ;
Ding, H ;
Wang, T ;
Hooper, LV ;
Koh, GY ;
Nagy, A ;
Semenkovich, CF ;
Gordon, JI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) :15718-15723
[3]   High-protein diets for weight management: Interactions with the intestinal microbiota and consequences for gut health. A position paper by the my new gut study group [J].
Blachier, Francois ;
Beaumont, Martin ;
Joseph Portune, Kevin ;
Steuer, Nils ;
Lan, Annaig ;
Audebert, Marc ;
Khodorova, Nadezda ;
Andriamihaja, Mireille ;
Airinei, Gheorghe ;
Benamouzig, Robert ;
Davila, Anne-Marie ;
Armand, Lucie ;
Rampelli, Simone ;
Brigidi, Patrizia ;
Tome, Daniel ;
Claus, Sandrine Paule ;
Sanz, Yolanda .
CLINICAL NUTRITION, 2019, 38 (03) :1012-1022
[4]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/NMETH.3869, 10.1038/nmeth.3869]
[5]   Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia [J].
Cani, P. D. ;
Neyrinck, A. M. ;
Fava, F. ;
Knauf, C. ;
Burcelin, R. G. ;
Tuohy, K. M. ;
Gibson, G. R. ;
Delzenne, N. M. .
DIABETOLOGIA, 2007, 50 (11) :2374-2383
[6]   Granulicatella infection: diagnosis and management [J].
Cargill, James S. ;
Scott, Katharine S. ;
Gascoyne-Binzi, Deborah ;
Sandoe, Jonathan A. T. .
JOURNAL OF MEDICAL MICROBIOLOGY, 2012, 61 (06) :755-761
[7]   Diet rapidly and reproducibly alters the human gut microbiome [J].
David, Lawrence A. ;
Maurice, Corinne F. ;
Carmody, Rachel N. ;
Gootenberg, David B. ;
Button, Julie E. ;
Wolfe, Benjamin E. ;
Ling, Alisha V. ;
Devlin, A. Sloan ;
Varma, Yug ;
Fischbach, Michael A. ;
Biddinger, Sudha B. ;
Dutton, Rachel J. ;
Turnbaugh, Peter J. .
NATURE, 2014, 505 (7484) :559-+
[8]   Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB [J].
DeSantis, T. Z. ;
Hugenholtz, P. ;
Larsen, N. ;
Rojas, M. ;
Brodie, E. L. ;
Keller, K. ;
Huber, T. ;
Dalevi, D. ;
Hu, P. ;
Andersen, G. L. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (07) :5069-5072
[9]   Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity [J].
Evans, Christian C. ;
LePard, Kathy J. ;
Kwak, Jeff W. ;
Stancukas, Mary C. ;
Laskowski, Samantha ;
Dougherty, Joseph ;
Moulton, Laura ;
Glawe, Adam ;
Wang, Yunwei ;
Leone, Vanessa ;
Antonopoulos, Dionysios A. ;
Smith, Dan ;
Chang, Eugene B. ;
Ciancio, Mae J. .
PLOS ONE, 2014, 9 (03)
[10]   Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation [J].
Forsythe, Cassandra E. ;
Phinney, Stephen D. ;
Fernandez, Maria Luz ;
Quann, Erin E. ;
Wood, Richard J. ;
Bibus, Doug M. ;
Kraemer, William J. ;
Feinman, Richard D. ;
Volek, Jeff S. .
LIPIDS, 2008, 43 (01) :65-77