MULTISCALE SPECTRAL-SPATIAL UNIFIED NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION

被引:0
|
作者
Wu, Sifan [1 ]
Zhang, Junping [1 ]
Zhong, Chongxiao [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; multiscale spectral-spatial information; two-branch architecture; deep learning;
D O I
10.1109/igarss.2019.8900581
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The combination of the spectral. and spatial features is received wide attention in hyperspectral image (HSI) classification. And the multiscale-strategy is an effective way in improving the classification accuracy for HSI due to the various sizes of land covers, which can capture more intrinsic information. For this reason, a multiscale spectral-spatial unified network (MSSN) with two-branch architecture is proposed for hyperspectral image classification. Different from other networks mainly focusing on the multiscale spatial features, the MSSN can jointly extract the multiscale spectral-spatial features, which is based on the reason that features of different layers in CNN correspond to different scales. In the implementation of the MSSN, the 1D CNN and 2D CNN are used to extract the spectral and spatial features respectively. Then the features of the corresponding layers in the two branches will be integrated to the fully-connected layers and finally sent to the classification layers. Experiments on two benchmark HSIs demonstrate that the proposed MSSN can yield a competitive performance compared with other existing methods.
引用
收藏
页码:2706 / 2709
页数:4
相关论文
共 50 条
  • [41] A Deep Network Based on Multiscale Spectral-Spatial Fusion for Hyperspectral Classification
    Li, Zhaokui
    Huang, Lin
    Zhang, Deyuan
    Liu, Cuiwei
    Wang, Yan
    Shi, Xiangbin
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2018, PT II, 2018, 11062 : 283 - 290
  • [42] Deep Multiscale Spectral-Spatial Feature Fusion for Hyperspectral Images Classification
    Liang, Miaomiao
    Jiao, Licheng
    Yang, Shuyuan
    Liu, Fang
    Hou, Biao
    Chen, Huan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (08) : 2911 - 2924
  • [43] Spectral-spatial hyperspectral image classification with dual spatial ensemble learning
    Fu, Wentao
    Sun, Xiyan
    Ji, Yuanfa
    Bai, Yang
    REMOTE SENSING LETTERS, 2021, 12 (12) : 1194 - 1206
  • [44] SPECTRAL-SPATIAL GRAPH CONVOLUTIONAL NETWORKS FOR SEMEI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION
    Qin, Anyong
    Liu, Chang
    Tian, Jinyu
    Shang, Zhaowei
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2018, : 89 - 94
  • [45] Spectral-Spatial Hyperspectral Image Classification Using Dual-Channel Capsule Networks
    Jiang, Xuefeng
    Liu, Wenbo
    Zhang, Yue
    Liu, Junrui
    Li, Shuying
    Lin, Jianzhe
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (06) : 1094 - 1098
  • [46] Spectral-spatial attention bilateral network for hyperspectral image classification
    Yang X.
    Chi Y.
    Zhou Y.
    Wang Y.
    National Remote Sensing Bulletin, 2023, 27 (11) : 2565 - 2578
  • [47] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [48] Spectral-Spatial Methods for Hyperspectral Image Classification. Review
    Borzov S.M.
    Potaturkin O.I.
    Optoelectronics, Instrumentation and Data Processing, 2018, 54 (6) : 582 - 599
  • [49] Multipath Residual Network for Spectral-Spatial Hyperspectral Image Classification
    Meng, Zhe
    Li, Lingling
    Tang, Xu
    Feng, Zhixi
    Jiao, Licheng
    Liang, Miaomiao
    REMOTE SENSING, 2019, 11 (16)
  • [50] Spectral-Spatial Classification of Hyperspectral Image Based on Discriminant Analysis
    Yuan, Haoliang
    Tang, Yuan Yan
    Lu, Yang
    Yang, Lina
    Luo, Huiwu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2035 - 2043