Generalized Lyapunov approach for functional differential inclusions

被引:32
作者
Cai, Zuowei [1 ,2 ]
Huang, Lihong [3 ]
机构
[1] Hunan Womens Univ, Dept Informat Technol, Changsha 410004, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[3] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
Functional differential inclusions; Filippov solution; Generalized Halanay inequalities; Uniformly ultimate boundedness (UUB); Uniformly asymptotic stability (UAS); NEURAL-NETWORKS; HALANAY INEQUALITIES; STABILITY; FEEDBACK; SYSTEMS;
D O I
10.1016/j.automatica.2019.108740
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the generalized Lyapunov approach for functional differential inclusions (FDI). At first, we prove a class of generalized Halanay's inequalities. Then, by applying the generalization of Halanay's inequalities, we investigate the uniformly ultimate boundedness and uniformly asymptotic stability of FDI. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 27 条
[1]  
Aubin JP., 1984, DIFFERENTIAL INCLUSI, DOI [10.1007/978-3-642-69512-4, DOI 10.1007/978-3-642-69512-4]
[2]  
Bacciotti A., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P361, DOI 10.1051/cocv:1999113
[3]  
Benchohra M., 2001, Electron. J. Differ. Equ, V141, P1
[4]   Finite-Time Stabilization of Delayed Memristive Neural Networks: Discontinuous State-Feedback and Adaptive Control Approach [J].
Cai, Zuowei ;
Huang, Lihong .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (04) :856-868
[5]   GENERALIZED LYAPUNOV-RAZUMIKHIN METHOD FOR RETARDED DIFFERENTIAL INCLUSIONS: APPLICATIONS TO DISCONTINUOUS NEURAL NETWORKS [J].
Cai, Zuowei ;
Huang, Jianhua ;
Huang, Lihong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (09) :3591-3614
[6]   Functional differential inclusions and dynamic behaviors for memristor-based BAM neural networks with time-varying delays [J].
Cai, Zuowei ;
Huang, Lihong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (05) :1279-1300
[7]  
Cortés J, 2008, IEEE CONTR SYST MAG, V28, P36, DOI 10.1109/MCS.2008.919306
[8]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
[9]  
Filippov A. F., 1988, MATH ITS APPL SOV SE
[10]   Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations [J].
Forti, A ;
Grazzini, A ;
Nistri, P ;
Pancioni, L .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 214 (01) :88-99