Multiplexed single-cell morphometry for hematopathology diagnostics

被引:31
作者
Tsai, Albert G. [1 ]
Glass, David R. [1 ,2 ]
Juntilla, Marisa [1 ]
Hartmann, Felix J. [1 ]
Oak, Jean S. [1 ]
Fernandez-Pol, Sebastian [1 ]
Ohgami, Robert S. [3 ]
Bendall, Sean C. [1 ,2 ]
机构
[1] Stanford Univ, Dept Pathol, Stanford, CA 94305 USA
[2] Stanford Univ, Immunol Grad Program, Stanford, CA 94305 USA
[3] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94140 USA
基金
瑞士国家科学基金会;
关键词
MASS CYTOMETRY; CLONALITY; STANDARDIZATION; LEUKEMIA; LYMPHOPROLIFERATIONS; MONOCYTES; REVEALS;
D O I
10.1038/s41591-020-0783-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The diagnosis of lymphomas and leukemias requires hematopathologists to integrate microscopically visible cellular morphology with antibody-identified cell surface molecule expression. To merge these into one high-throughput, highly multiplexed, single-cell assay, we quantify cell morphological features by their underlying, antibody-measurable molecular components, which empowers mass cytometers to 'see' like pathologists. When applied to 71 diverse clinical samples, single-cell morphometric profiling reveals robust and distinct patterns of 'morphometric' markers for each major cell type. Individually, lamin B1 highlights acute leukemias, lamin A/C helps distinguish normal from neoplastic mature T cells, and VAMP-7 recapitulates light-cytometric side scatter. Combined with machine learning, morphometric markers form intuitive visualizations of normal and neoplastic cellular distribution and differentiation. When recalibrated for myelomonocytic blast enumeration, this approach is superior to flow cytometry and comparable to expert microscopy, bypassing years of specialized training. The contextualization of traditional surface markers on independent morphometric frameworks permits more sensitive and automated diagnosis of complex hematopoietic diseases. A scalable mass cytometry-based method for morphometrically classifying hematopoietic cells demonstrates diagnostic utility when applied to clinical samples.
引用
收藏
页码:408 / +
页数:26
相关论文
共 39 条
  • [1] viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    Amir, El-ad David
    Davis, Kara L.
    Tadmor, Michelle D.
    Simonds, Erin F.
    Levine, Jacob H.
    Bendall, Sean C.
    Shenfeld, Daniel K.
    Krishnaswamy, Smita
    Nolan, Garry P.
    Pe'er, Dana
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (06) : 545 - +
  • [2] Multiplexed ion beam imaging of human breast tumors
    Angelo, Michael
    Bendall, Sean C.
    Finck, Rachel
    Hale, Matthew B.
    Hitzman, Chuck
    Borowsky, Alexander D.
    Levenson, Richard M.
    Lowe, John B.
    Liu, Scot D.
    Zhao, Shuchun
    Natkunam, Yasodha
    Nolan, Garry P.
    [J]. NATURE MEDICINE, 2014, 20 (04) : 436 - +
  • [3] [Anonymous], 2018, Cancer Facts Figures
  • [4] [Anonymous], FLOW CYTOMETRY HEMAT
  • [5] [Anonymous], 2017, WHO CLASSIFICATION T
  • [6] Dimensionality reduction for visualizing single-cell data using UMAP
    Becht, Etienne
    McInnes, Leland
    Healy, John
    Dutertre, Charles-Antoine
    Kwok, Immanuel W. H.
    Ng, Lai Guan
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 38 - +
  • [7] Applications of Mass Cytometry in Clinical Medicine The Promise and Perils of Clinical CyTOF
    Behbehani, Gregory K.
    [J]. CLINICS IN LABORATORY MEDICINE, 2017, 37 (04) : 945 - +
  • [8] Boone Elke, 2013, Methods Mol Biol, V971, P65, DOI 10.1007/978-1-62703-269-8_4
  • [9] Carr J.H., 2004, Clinical Hematology Atlas, VSecond
  • [10] Chung JW, 2012, ANN CLIN LAB SCI, V42, P271