Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana

被引:48
|
作者
Wei, Q. [1 ]
Guo, Y. J. [1 ]
Cao, H. M. [2 ]
Kuai, B. K. [1 ]
机构
[1] Fudan Univ, Sch Life Sci, Inst Plant Biol, State Key Lab Genet Engn, Shanghai 200433, Peoples R China
[2] Nanjing Forestry Univ, Bamboo Res Inst, Nanjing 210037, Peoples R China
关键词
Na+/H+ antiporter; Ammopiptanthus mongolicus; Salt tolerance; Drought tolerance; CATION/PROTON ANTIPORTER; ION HOMEOSTASIS; OVEREXPRESSION; ATNHX1; PLANTS; STRESS; YIELD;
D O I
10.1007/s11240-010-9869-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
An orthologue of the vacuolar Na+/H+ antiporter gene, AmNHX2, was isolated from a desert plant, Ammopiptanthus mongolicus, by RACE-PCR. It has a total length of 1,986 bp, with an open reading frame of 1,632 bp, encoding a predicted polypeptide of 543 amino acids. Sequence similarity and exon constituent analysis clearly suggested that AmNHX2 encoded an AtNHX2 (an antiporter from Arabidopsis) like vacuolar Na+/H+ antiporter. AmNHX2 could be strongly induced by both drought and salt stress. Heterologous expression in the yeast mutant nhx1 indicated that AmNHX2 was the orthologue of ScNHX1, and the complementation effect was almost the same as AtNHX1. Over-expressing AmNHX2 resulted in enhanced tolerances to both drought and salt stresses in transgenic Arabidopsis plants. The transgenic plants accumulated lower Na+ content in their leaves, showing healthier root system after salt stress, and retained more water during the drought stress. Our work suggested that AmNHX2 was a salt tolerance determinant in A. mongolicus, but might not be a contributor to the difference in salt sensitivity between A. thaliana and A. mongolicus.
引用
收藏
页码:309 / 316
页数:8
相关论文
共 50 条
  • [1] Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana
    Q. Wei
    Y. J. Guo
    H. M. Cao
    B. K. Kuai
    Plant Cell, Tissue and Organ Culture (PCTOC), 2011, 105 : 309 - 316
  • [2] Cloning and Functional Characterization of a Vacuolar Na+/H+ Antiporter Gene from Mungbean (VrNHX1) and Its Ectopic Expression Enhanced Salt Tolerance in Arabidopsis thaliana
    Mishra, Sagarika
    Alavilli, Hemasundar
    Lee, Byeong-Ha
    Panda, Sanjib Kumar
    Sahoo, Lingaraj
    PLOS ONE, 2014, 9 (10):
  • [3] Ectopic expression of Arabidopsis thaliana Na+(K+)/H+ antiporter gene, AtNHX5, enhances soybean salt tolerance
    Wu, X. X.
    Li, J.
    Wu, X. D.
    Liu, Q.
    Wang, Z. K.
    Liu, S. S.
    Li, S. N.
    Ma, Y. L.
    Sun, J.
    Zhao, L.
    Li, H. Y.
    Li, D. M.
    Li, W. B.
    Su, A. Y.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)
  • [4] Ectopic expression of an Ammopiptanthus mongolicus H+-pyrophosphatase gene enhances drought and salt tolerance in Arabidopsis
    Q. Wei
    P. Hu
    B. K. Kuai
    Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 110 : 359 - 369
  • [5] Ectopic expression of an Ammopiptanthus mongolicus H+-pyrophosphatase gene enhances drought and salt tolerance in Arabidopsis
    Wei, Q.
    Hu, P.
    Kuai, B. K.
    PLANT CELL TISSUE AND ORGAN CULTURE, 2012, 110 (03) : 359 - 369
  • [6] Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa)
    Tian, N.
    Wang, J.
    Xu, Z. Q.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2011, 77 (01) : 160 - 169
  • [7] Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana
    Shi, HZ
    Lee, BH
    Wu, SJ
    Zhu, JK
    NATURE BIOTECHNOLOGY, 2003, 21 (01) : 81 - 85
  • [8] Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana
    Huazhong Shi
    Byeong-ha Lee
    Shaw-Jye Wu
    Jian-Kang Zhu
    Nature Biotechnology, 2003, 21 : 81 - 85
  • [9] Overexpression of AtNHX1, a Vacuolar Na+/H+ Antiporter from Arabidopsis thalina, in Petunia hybrida Enhances Salt and Drought Tolerance
    Kai Xu
    Ping Hong
    Lijun Luo
    Tao Xia
    Journal of Plant Biology, 2009, 52 : 453 - 461
  • [10] Overexpression of AtNHX1, a Vacuolar Na+/H+ Antiporter from Arabidopsis thalina, in Petunia hybrida Enhances Salt and Drought Tolerance
    Xu, Kai
    Hong, Ping
    Luo, Lijun
    Xia, Tao
    JOURNAL OF PLANT BIOLOGY, 2009, 52 (05) : 453 - 461