The Lambert series factorization theorem

被引:14
作者
Merca, Mircea [1 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, DJ, Romania
关键词
Divisors; Lambert series; Partitions; DIVISORS; NUMBER;
D O I
10.1007/s11139-016-9856-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A factorization for partial sums of Lambert series is introduced in this paper. As corollaries, we derive some connections between partitions and divisors. These results can be easily used to discover and prove new combinatorial identities involving important functions from number theory: the Mobius function , Euler's totient , Jordan's totient , Liouville's function , the von Mangoldt function , and the divisor function . The fascinating feature of these identities is their common nature.
引用
收藏
页码:417 / 435
页数:19
相关论文
共 17 条
[1]  
Andrews G.E., 2004, Integer Partitions
[2]  
Andrews GE, 2005, RAMANUJANS LOST NOTE
[3]  
[Anonymous], 2010, Handbook of Mathematical Functions
[4]  
[Anonymous], 1976, Problems and Theorems in Analysis
[5]   New convolutions for the number of divisors [J].
Ballantine, Cristina ;
Merca, Mircea .
JOURNAL OF NUMBER THEORY, 2017, 170 :17-34
[6]  
Bromwich T. J. IA., 1926, INTRO THEORY INFINIT
[7]  
Chrystal G., 1952, ALGEBRA, V2
[8]  
Hardy G.H., 2008, An Introduction to the Theory of Numbers, VSixth
[9]  
Knopp K., 1990, Theory and Application of Infinite Series
[10]  
MacMahon P.A., 1960, Combinatory Analysis