Impulsive Synchronization on Complex Networks of Nonlinear Dynamical Systems

被引:0
作者
Chen, Juan [1 ]
Lu, Jun-an [1 ]
Wu, Xiaoqun [1 ]
Zheng, Wei Xing [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Univ Western Sydney, Sch Comp & Math, Penrith, NSW 1797, Australia
来源
2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS | 2010年
基金
澳大利亚研究理事会;
关键词
GENERALIZED SYNCHRONIZATION; CHAOS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is concerned with applying the impulsive control scheme to generalized synchronization (GS) of complex networks of nonlinear dynamical systems. The auxiliary-system approach is utilized to show that complex dynamical networks consisting of nonidentical systems can reach generalized synchronization under impulsive control. Then the relations between the GS error and the topological parameter are examined for scale-free networks, which reveals that an increase in the topological parameter causes a decrease in the GS error. Also, the relations between the GS speed and the adding of random edges are investigated for small-world networks, which shows that increasing the probability of adding random edges can accelerate GS. Moreover, the effect of node dynamics on the GS speed is studied for both small-world and scale-free networks.
引用
收藏
页码:421 / 424
页数:4
相关论文
共 13 条
  • [1] Generalized synchronization of chaos: The auxiliary system approach
    Abarbanel, HDI
    Rulkov, NF
    Sushchik, MM
    [J]. PHYSICAL REVIEW E, 1996, 53 (05) : 4528 - 4535
  • [2] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [3] Designing coupling for synchronization and amplification of chaos
    Grosu, Ioan
    Padmanaban, E.
    Roy, Prodyot K.
    Dana, Syamal K.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (23)
  • [4] The development of generalized synchronization on complex networks
    Guan, Shuguang
    Wang, Xingang
    Gong, Xiaofeng
    Li, Kun
    Lai, C. -H.
    [J]. CHAOS, 2009, 19 (01)
  • [5] Paths to globally generalized synchronization in scale-free networks
    Hung, Yao-Chen
    Huang, Yu-Ting
    Ho, Ming-Chung
    Hu, Chin-Kun
    [J]. PHYSICAL REVIEW E, 2008, 77 (01):
  • [6] Ichinomiya T, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.026116
  • [7] Renormalization group analysis of the small-world network model
    Newman, MEJ
    Watts, DJ
    [J]. PHYSICS LETTERS A, 1999, 263 (4-6) : 341 - 346
  • [8] GENERALIZED SYNCHRONIZATION OF CHAOS IN DIRECTIONALLY COUPLED CHAOTIC SYSTEMS
    RULKOV, NF
    SUSHCHIK, MM
    TSIMRING, LS
    ABARBANEL, HDI
    [J]. PHYSICAL REVIEW E, 1995, 51 (02) : 980 - 994
  • [9] Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble
    Schiff, SJ
    So, P
    Chang, T
    Burke, RE
    Sauer, T
    [J]. PHYSICAL REVIEW E, 1996, 54 (06) : 6708 - 6724
  • [10] Synchronization in small-world dynamical networks
    Wang, XF
    Chen, GR
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (01): : 187 - 192