Representations and structural properties of periodic systems

被引:10
|
作者
Aleixo, Jose Carlos [1 ]
Polderman, Jan Willem
Rocha, Paula
机构
[1] Univ Beira Interior, Dept Math, P-6201001 Covilha, Portugal
[2] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[3] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
关键词
discrete-time systems; time-varying systems; difference equations; behavior;
D O I
10.1016/j.automatica.2007.03.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider periodic behavioral systems as introduced in [Kuijper, M., & Willems, J. C. (1997). A behavioral framework for periodically time-varying systems. In Proceedings of the 36th conference on decision & control (Vol. 3, pp. 2013-2016). San Diego, California, USA, 10-12 December 1997] and analyze two main issues: behavioral representation, and controllability/autonomy. More concretely, we study the equivalence and the minimality of kernel representations, and introduce latent variable (and, in particular, image) representations. Moreover we relate the controllability of a periodic system with the controllability of an associated time-invariant system known as lifted system, and derive a controllability test. Further, we prove the existence of an autonomous/controllable decomposition similar to the time-invariant case. Finally, we introduce a new concept of free variables and inputs, which can be regarded as a generalization of the one adopted for time-invariant systems, but appears to be more adequate for the periodic case. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1921 / 1931
页数:11
相关论文
共 50 条
  • [21] Asymptotics for solutions of periodic difference systems
    Omon Arancibia, Alejandro
    Pinto, Manuel
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (05) : 461 - 472
  • [22] Algebraic analysis of the structural properties of parametric linear time-invariant systems
    Menini, Laura
    Possieri, Corrado
    Tornambe, Antonio
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (20) : 3568 - 3579
  • [23] SYSTEM EQUIVALENCE FOR PERIODIC MODELS AND SYSTEMS
    GRASSELLI, OM
    LONGHI, S
    TORNAMBE, A
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (02) : 455 - 468
  • [24] Uniform Global Asymptotic Stabilization of Semilinear Periodic Discrete-Time Systems
    Czornik, Adam
    Makarov, Evgenii
    Niezabitowski, Michal
    Popova, Svetlana
    Zaitsev, Vasilii
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (07) : 3598 - 3605
  • [25] LMI tools for eventually periodic systems
    Farhood, M
    Dullerud, GE
    SYSTEMS & CONTROL LETTERS, 2002, 47 (05) : 417 - 432
  • [26] Structural nanocrystalline Ni coatings on periodic cellular steel
    Bouwhuis, B. A.
    Ronis, T.
    McCrea, J. L.
    Palumbo, G.
    Hibbard, G. D.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (3-4) : 385 - 390
  • [27] Fourier state-space analysis of linear discrete-time periodic systems
    Toivonen, Hannu T.
    Hietarinta, Lassi
    AUTOMATICA, 2015, 53 : 136 - 140
  • [28] Investigation on structural, optical, and electrical properties for sintered Mg-Zn aluminate systems
    Jagadeeshwaran, C.
    Murugaraj, R.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (09) : 6744 - 6754
  • [30] Canonical State Representations and Hilbert Functions of Multidimensional Systems
    Ulrich Oberst
    Acta Applicandae Mathematica, 2006, 94 : 83 - 135