TUMORNET: LUNG NODULE CHARACTERIZATION USING MULTI-VIEW CONVOLUTIONAL NEURAL NETWORK WITH GAUSSIAN PROCESS

被引:0
|
作者
Hussein, Sarfaraz [1 ]
Gillies, Robert [2 ]
Cao, Kunlin [3 ]
Song, Qi [3 ]
Bagci, Ulas [1 ]
机构
[1] Univ Cent Florida, CRCV, Orlando, FL 32816 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL USA
[3] CuraCloud Corp, Seattle, WA USA
来源
2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017) | 2017年
关键词
Computer-aided diagnosis; deep learning; computed tomography; lung cancer; pulmonary nodule;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Characterization of lung nodules as benign or malignant is one of the most important tasks in lung cancer diagnosis, staging and treatment planning. While the variation in the appearance of the nodules remains large, there is a need for a fast and robust computer aided system. In this work, we propose an end-to-end trainable multi-view deep Convolutional Neural Network (CNN) for nodule characterization. First, we use median intensity projection to obtain a 2D patch corresponding to each dimension. The three images are then concatenated to form a tensor, where the images serve as different channels of the input image. In order to increase the number of training samples, we perform data augmentation by scaling, rotating and adding noise to the input image. The trained network is used to extract features from the input image followed by a Gaussian Process (GP) regression to obtain the malignancy score. We also empirically establish the significance of different high level nodule attributes such as calcification, sphericity and others for malignancy determination. These attributes are found to be complementary to the deep multi-view CNN features and a significant improvement over other methods is obtained.
引用
收藏
页码:1007 / 1010
页数:4
相关论文
共 50 条
  • [1] Multi-view Convolutional Neural Network for lung nodule false positive reduction
    El-Regaily, Salsabil Amin
    Salem, Mohammed Abdel Megeed
    Aziz, Mohamed Hassan Abdel
    Roushdy, Mohamed Ismail
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 162
  • [2] A Multi-view Deep Convolutional Neural Networks for Lung Nodule Segmentation
    Wang, Shuo
    Zhou, Mu
    Gevaert, Olivier
    Tang, Zhenchao
    Dong, Di
    Liu, Zhenyu
    Tian, Jie
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 1752 - 1755
  • [3] Multi-view Convolutional Recurrent Neural Networks for Lung Cancer Nodule Identification
    Abid, Mian Muhammad Naeem
    Zia, Tehseen
    Ghafoor, Mubeen
    Windridge, David
    NEUROCOMPUTING, 2021, 453 : 299 - 311
  • [4] 3D multi-view squeeze-and-excitation convolutional neural network for lung nodule classification
    Yang, Yang
    Li, Xiaoqin
    Fu, Jipeng
    Han, Zhenbo
    Gao, Bin
    MEDICAL PHYSICS, 2023, 50 (03) : 1905 - 1916
  • [5] 3D multi-view convolutional neural networks for lung nodule classification
    Kang, Guixia
    Liu, Kui
    Hou, Beibei
    Zhang, Ningbo
    PLOS ONE, 2017, 12 (11):
  • [6] Multi-View Image Denoising Using Convolutional Neural Network
    Zhou, Shiwei
    Hu, Yu-Hen
    Jiang, Hongrui
    SENSORS, 2019, 19 (11)
  • [7] Using a Multi-view Convolutional Neural Network to monitor solar irradiance
    Huertas-Tato, Javier
    Galvan, Ines M.
    Aler, Ricardo
    Javier Rodriguez-Benitez, Francisco
    Pozo-Vazquez, David
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10295 - 10307
  • [8] Using a Multi-view Convolutional Neural Network to monitor solar irradiance
    Javier Huertas-Tato
    Inés M. Galván
    Ricardo Aler
    Francisco Javier Rodríguez-Benítez
    David Pozo-Vázquez
    Neural Computing and Applications, 2022, 34 : 10295 - 10307
  • [9] EMPHYSEMA CLASSIFICATION USING A MULTI-VIEW CONVOLUTIONAL NETWORK
    Bermejo-Pelaez, David
    Estepar, Raul San Jose
    Ledesma-Carbayo, M. J.
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 519 - 522
  • [10] Multi-Task Medical Concept Normalization Using Multi-View Convolutional Neural Network
    Luo, Yi
    Song, Guojie
    Li, Pengyu
    Qi, Zhongang
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 5868 - 5875