Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model

被引:8
作者
Mansouri, Djamel [1 ,2 ]
Abdelmalek, Salem [2 ,3 ]
Bendoukha, Samir [4 ]
机构
[1] Univ Abbes Laghrour, Dept Math, Khenchela, Algeria
[2] Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Tebessa, Algeria
[3] Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa, Algeria
[4] Taibah Univ, Elect Engn Dept, Coll Engn Yanbu, Medina, Saudi Arabia
关键词
General lengyel-Epstein model; Reaction-diffusion; Hopf-bifurcation; Pattern formation; TURING PATTERNS; SYSTEMATIC DESIGN; OSCILLATIONS; STABILITY;
D O I
10.1016/j.chaos.2019.109579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the formation of spatial patterns in a general reaction-diffusion system based on the Lengyel-Epstein CIMA model. By analyzing the properties of the system's unique positive equilibrium in the ODE and PDE cases, we establish the existence of non-constant steady state solutions thereby confirming the existence of Turing instability. Hopf-bifurcation analysis of the system show the existence of periodic solutions in the absence and presence of diffusion. Numerical simulations are presented to validate the theoretical results of the paper. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Parameter estimation for a morphochemical reaction-diffusion model of electrochemical pattern formation
    Sgura, Ivonne
    Lawless, Amos S.
    Bozzini, Benedetto
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (05) : 618 - 647
  • [42] Cellular automata approach to pattern formation in reaction-diffusion systems
    Droz, M
    [J]. PHYSICA A, 1997, 240 (1-2): : 239 - 245
  • [43] Lattice Boltzmann study of pattern formation in reaction-diffusion systems
    Ayodele, S. G.
    Varnik, F.
    Raabe, D.
    [J]. PHYSICAL REVIEW E, 2011, 83 (01):
  • [44] PATTERN FORMATION IN REACTION-DIFFUSION NEURAL NETWORKS WITH LEAKAGE DELAY
    Lin, Jiazhe
    Xu, Rui
    Tian, Xiaohong
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (06): : 2224 - 2244
  • [45] PATTERN FORMATION IN A MIXED LOCAL AND NONLOCAL REACTION-DIFFUSION SYSTEM
    Sander, Evelyn
    Tatum, Richard
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [46] Parametric Pattern Selection in a Reaction-Diffusion Model
    Stich, Michael
    Ghoshal, Gourab
    Perez-Mercader, Juan
    [J]. PLOS ONE, 2013, 8 (10):
  • [47] Pattern formation in a coupled membrane-bulk reaction-diffusion model for intracellular polarization and oscillations
    Paquin-Lefebvre, Frederic
    Xu, Bin
    DiPietro, Kelsey L.
    Lindsay, Alan E.
    Jilkine, Alexandra
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2020, 497
  • [48] Pattern dynamics analysis of a reaction-diffusion network propagation model
    Zhu, Linhe
    Chen, Siyi
    Shen, Shuling
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 220 : 425 - 444
  • [49] Model Accuracy Assessment in Reaction-Diffusion Pattern Formation in Wireless Sensor Networks
    Henderson, Thomas C.
    Joshi, Anshul
    Rashkeev, Kirril
    Boonsirisumpun, Narong
    Luthy, Kyle
    Grant, Edward
    [J]. INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2014, 10 (04) : 317 - 338
  • [50] Pattern formation in reaction-diffusion information propagation model on multiplex simplicial complexes
    Ye, Yong
    Zhou, Jiaying
    Zhao, Yi
    [J]. INFORMATION SCIENCES, 2025, 689