Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model

被引:8
作者
Mansouri, Djamel [1 ,2 ]
Abdelmalek, Salem [2 ,3 ]
Bendoukha, Samir [4 ]
机构
[1] Univ Abbes Laghrour, Dept Math, Khenchela, Algeria
[2] Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Tebessa, Algeria
[3] Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa, Algeria
[4] Taibah Univ, Elect Engn Dept, Coll Engn Yanbu, Medina, Saudi Arabia
关键词
General lengyel-Epstein model; Reaction-diffusion; Hopf-bifurcation; Pattern formation; TURING PATTERNS; SYSTEMATIC DESIGN; OSCILLATIONS; STABILITY;
D O I
10.1016/j.chaos.2019.109579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the formation of spatial patterns in a general reaction-diffusion system based on the Lengyel-Epstein CIMA model. By analyzing the properties of the system's unique positive equilibrium in the ODE and PDE cases, we establish the existence of non-constant steady state solutions thereby confirming the existence of Turing instability. Hopf-bifurcation analysis of the system show the existence of periodic solutions in the absence and presence of diffusion. Numerical simulations are presented to validate the theoretical results of the paper. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Pattern formation in a reaction-diffusion parasite-host model
    Zhang, Baoxiang
    Cai, Yongli
    Wang, Bingxian
    Wang, Weiming
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 525 : 732 - 740
  • [22] Pattern formation in a general glycolysis reaction-diffusion system
    Zhou, Jun
    Shi, Junping
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (06) : 1703 - 1738
  • [23] Turing Instability and Pattern Formation for the Lengyel–Epstein System with Nonlinear Diffusion
    G. Gambino
    M. C. Lombardo
    M. Sammartino
    Acta Applicandae Mathematicae, 2014, 132 : 283 - 294
  • [24] Non-monotonic resonance in a spatially forced Lengyel-Epstein model
    Haim, Lev
    Hagberg, Aric
    Meron, Ehud
    CHAOS, 2015, 25 (06)
  • [25] Pattern Formation in a Reaction-Diffusion System with Space-Dependent Feed Rate
    Kolokolnikov, Theodore
    Wei, Juncheng
    SIAM REVIEW, 2018, 60 (03) : 626 - 645
  • [26] Optimal control problem for Lengyel-Epstein model with obstacles and state constraints
    Zheng, Jiashan
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2016, 21 (01): : 18 - 39
  • [27] Pattern formation mechanisms in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2009, 53 (5-6) : 673 - 681
  • [28] A theory of pattern formation for reaction-diffusion systems on temporal networks
    Van Gorder, Robert A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2247):
  • [29] Spatial pattern formation in reaction-diffusion models: a computational approach
    Hao, Wenrui
    Xue, Chuan
    JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 80 (1-2) : 521 - 543
  • [30] Pattern formation for a two-dimensional reaction-diffusion model with chemotaxis
    Ma, Manjun
    Gao, Meiyan
    Carretero-Gonzalez, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1883 - 1909