Decidability of the theory of the natural integers with the cantor pairing function and the successor

被引:19
作者
Cegielski, P
Richard, D
机构
[1] Univ Paris 12, LACL, F-77300 Fontainebleau, France
[2] Univ Auvergne, LLAICI, IUT Informat Cezeaux, F-63172 Aubiere, France
关键词
D O I
10.1016/S0304-3975(00)00109-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The binary Canter pairing function C from N x N into N is defined by C(x, y) = (1/2)(x +y) (x + y + 1) + g:. We consider the theory of natural integers equipped with the Canter pairing function and an extra relation or function X on N. When X is equal either to multiplication, or coprimeness, or divisibility, or addition or natural ordering, it can be proved that the theory Th(N, C,X) is undecidable. Let S be the successor function. We provide an algorithm solving the decision problem for Th(N,C,S). (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:51 / 77
页数:27
相关论文
共 13 条
[1]  
CANTOR G, 1974, J REINE ANGEW MATH, V77, P58
[2]  
CANTOR G, 1962, PHILOS MATH, P177
[3]  
Cantor G, 1883, ACTA MATHEMETICA, V2, P305
[4]   On arithmetical first-order theories allowing encoding and decoding of lists [J].
Cegielski, P ;
Richard, D .
THEORETICAL COMPUTER SCIENCE, 1999, 222 (1-2) :55-75
[5]   Definability, decidability, complexity [J].
Cegielski, P .
ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 1996, 16 (1-4) :311-341
[6]  
CEGIELSKI P, IN PRESS COMPTES REN
[7]   A UNIFORM METHOD FOR PROVING LOWER BOUNDS ON THE COMPUTATIONAL-COMPLEXITY OF LOGICAL THEORIES [J].
COMPTON, KJ ;
HENSON, CW .
ANNALS OF PURE AND APPLIED LOGIC, 1990, 48 (01) :1-79
[8]  
Enderton H.B., 2001, A Mathematical Introduction to Logic, V2nd
[9]  
Feferman S., 1996, COLLECTED WORKS J RO
[10]  
Ferrante J., 1979, LECT NOTES MATH, V718