Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation

被引:83
|
作者
Rocha, Sandra M. [1 ]
Saraiva, Tatiana [1 ]
Cristovao, Ana C. [1 ]
Ferreira, Raquel [1 ]
Santos, Tiago [1 ]
Esteves, Marta [1 ]
Saraiva, Claudia [1 ]
Je, Goun [2 ]
Cortes, Luisa [3 ]
Valero, Jorge [3 ]
Alves, Gilberto [1 ]
Klibanov, Alexander [4 ,5 ]
Kim, Yoon-Seong [2 ]
Bernardino, Liliana [1 ,6 ]
机构
[1] Univ Beira Interior, Fac Hlth Sci, Hlth Sci Res Ctr, P-6200506 Covilha, Portugal
[2] Univ Cent Florida, Coll Med, Burnett Sch Biomed Sci, Orlando, FL 32816 USA
[3] Ctr Neurosci & Cell Biol, Coimbra, Portugal
[4] Univ Virginia, Div Cardiovasc Med, Charlottesville, VA USA
[5] Univ Virginia, Dept Biomed Engn, Charlottesville, VA USA
[6] Univ Beira Interior, Hlth Sci Res Ctr, Av Infante D Henrique, P-6200506 Covilha, Portugal
关键词
Histamine; Microglia; Phagocytosis; NADPH oxidase; Neurotoxicity; Dopaminergic neurons; PRIMARY PHAGOCYTOSIS; SUBSTANTIA-NIGRA; OXIDATIVE STRESS; BRAIN HISTAMINE; TNF-ALPHA; CELLS; MACROPHAGES; PARAQUAT; MODULATION; EXPRESSION;
D O I
10.1186/s12974-016-0600-0
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background: Histamine is an amine widely known as a peripheral inflammatory mediator and as a neurotransmitter in the central nervous system. Recently, it has been suggested that histamine acts as an innate modulator of microglial activity. Herein, we aimed to disclose the role of histamine in microglial phagocytic activity and reactive oxygen species (ROS) production and to explore the consequences of histamine-induced neuroinflammation in dopaminergic (DA) neuronal survival. Methods: The effect of histamine on phagocytosis was assessed both in vitro by using a murine N9 microglial cell line and primary microglial cell cultures and in vivo. Cells were exposed to IgG-opsonized latex beads or phosphatidylserine ( PS) liposomes to evaluate Fc gamma or PS receptor-mediated microglial phagocytosis, respectively. ROS production and protein levels of NADPH oxidases and Rac1 were assessed as a measure of oxidative stress. DA neuronal survival was evaluated in vivo by counting the number of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) of mice. Results: We found that histamine triggers microglial phagocytosis via histamine receptor 1 (H1R) activation and ROS production via H1R and H4R activation. By using apocynin, a broad NADPH oxidase (Nox) inhibitor, and Nox1 knockout mice, we found that the Nox1 signaling pathway is involved in both phagocytosis and ROS production induced by histamine in vitro. Interestingly, both apocynin and annexin V (used as inhibitor of PS-induced phagocytosis) fully abolished the DA neurotoxicity induced by the injection of histamine in the SN of adult mice in vivo. Blockade of H1R protected against histamine-induced Nox1 expression and death of DA neurons in vivo. Conclusions: Overall, our results highlight the relevance of histamine in the modulation of microglial activity that ultimately may interfere with neuronal survival in the context of Parkinson's disease (PD) and, eventually, other neurodegenerative diseases which are accompanied by microglia-induced neuroinflammation. Importantly, our results also open promising new perspectives for the therapeutic use of H1R antagonists to treat or ameliorate neurodegenerative processes.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Thrombin induces in vivo degeneration of nigral dopaminergic neurones along with the activation of microglia
    Carreño-Müller, E
    Herrera, AJ
    de Pablos, RM
    Tomás-Camardiel, M
    Venero, JL
    Cano, J
    Machado, A
    JOURNAL OF NEUROCHEMISTRY, 2003, 84 (05) : 1201 - 1214
  • [42] Amyloid β induces microglia to phagocytose neurons via activation of protein kinase Cs and NADPH oxidase
    Neniskyte, Urte
    Fricker, Michael
    Brown, Guy C.
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2016, 81 : 346 - 355
  • [43] Role of histamine H1 receptor in caffeine induced locomotor sensitization
    Kumar, Shalu
    Verma, Lokesh
    Jain, Nishant S.
    NEUROSCIENCE LETTERS, 2018, 668 : 60 - 66
  • [44] Histamine Excites Rat GABAergic Ventral Pallidum Neurons via Co-activation of H1 and H2 Receptors
    Miao-Jin Ji
    Xiao-Yang Zhang
    Xiao-Chun Peng
    Yang-Xun Zhang
    Zi Chen
    Lei Yu
    Jian-Jun Wang
    Jing-Ning Zhu
    Neuroscience Bulletin, 2018, 34 : 1029 - 1036
  • [45] Structure of the human histamine H1 receptor with doxepin
    Shimamura, Tatsuro
    Shiroishi, Mitsunori
    Weyand, Simone
    Tsujimoto, Hirokazu
    Winter, Graeme
    Katritch, Vsevolod
    Abagyan, Ruben
    Cherezov, Vadim
    Liu, Wei
    Han, Gye Won
    Kobayashi, Takuya
    Stevens, Raymond C.
    Iwata, So
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C185 - C186
  • [46] The Systemic Administration of the Histamine H1 Receptor Antagonist/Inverse Agonist Chlorpheniramine to Pregnant Rats Impairs the Development of Nigro-Striatal Dopaminergic Neurons
    Marquez-Valadez, Berenice
    Aquino-Miranda, Guillermo
    Quintero-Romero, Mijail-Oliver
    Papacostas-Quintanilla, Helena
    Bueno-Nava, Antonio
    Lopez-Rubalcava, Carolina
    Diaz, Nestor Fabian
    Arias-Montano, Jose-Antonio
    Molina-Hernandez, Anayansi
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [47] Histamine Excites Rat GABAergic Ventral Pallidum Neurons via Co-activation of H1 and H2 Receptors
    Miao-Jin Ji
    Xiao-Yang Zhang
    Xiao-Chun Peng
    Yang-Xun Zhang
    Zi Chen
    Lei Yu
    Jian-Jun Wang
    Jing-Ning Zhu
    NeuroscienceBulletin, 2018, 34 (06) : 1029 - 1036
  • [48] Histamine H1 Receptor Contributes to Vestibular Compensation
    Chen, Zhang-Peng
    Zhang, Xiao-Yang
    Peng, Shi-Yu
    Yang, Zhong-Qin
    Wang, Yan-Bo
    Zhang, Yang-Xun
    Chen, Xi
    Wang, Jian-Jun
    Zhu, Jing-Ning
    JOURNAL OF NEUROSCIENCE, 2019, 39 (03) : 420 - 433
  • [49] Histamine H1 and H3 receptor activation increases the expression of Glucose Transporter 1 (GLUT-1) in rat cerebro-cortical astrocytes in primary culture
    Parra-Abarca, Juan
    Rivera-Ramirez, Nayeli
    Villa-Maldonado, Luis-Fernando
    Garcia-Hernandez, Ubaldo
    Aguilera, Penelope
    Arias-Montano, Jose-Antonio
    NEUROCHEMISTRY INTERNATIONAL, 2019, 131
  • [50] Acute exposure to lead acetate activates microglia and induces subsequent bystander neuronal death via caspase-3 activation
    Kumawat, Kanhaiya Lal
    Kaushik, Deepak Kumar
    Goswami, Praveen
    Basu, Anirban
    NEUROTOXICOLOGY, 2014, 41 : 143 - 153