Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation

被引:83
|
作者
Rocha, Sandra M. [1 ]
Saraiva, Tatiana [1 ]
Cristovao, Ana C. [1 ]
Ferreira, Raquel [1 ]
Santos, Tiago [1 ]
Esteves, Marta [1 ]
Saraiva, Claudia [1 ]
Je, Goun [2 ]
Cortes, Luisa [3 ]
Valero, Jorge [3 ]
Alves, Gilberto [1 ]
Klibanov, Alexander [4 ,5 ]
Kim, Yoon-Seong [2 ]
Bernardino, Liliana [1 ,6 ]
机构
[1] Univ Beira Interior, Fac Hlth Sci, Hlth Sci Res Ctr, P-6200506 Covilha, Portugal
[2] Univ Cent Florida, Coll Med, Burnett Sch Biomed Sci, Orlando, FL 32816 USA
[3] Ctr Neurosci & Cell Biol, Coimbra, Portugal
[4] Univ Virginia, Div Cardiovasc Med, Charlottesville, VA USA
[5] Univ Virginia, Dept Biomed Engn, Charlottesville, VA USA
[6] Univ Beira Interior, Hlth Sci Res Ctr, Av Infante D Henrique, P-6200506 Covilha, Portugal
关键词
Histamine; Microglia; Phagocytosis; NADPH oxidase; Neurotoxicity; Dopaminergic neurons; PRIMARY PHAGOCYTOSIS; SUBSTANTIA-NIGRA; OXIDATIVE STRESS; BRAIN HISTAMINE; TNF-ALPHA; CELLS; MACROPHAGES; PARAQUAT; MODULATION; EXPRESSION;
D O I
10.1186/s12974-016-0600-0
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background: Histamine is an amine widely known as a peripheral inflammatory mediator and as a neurotransmitter in the central nervous system. Recently, it has been suggested that histamine acts as an innate modulator of microglial activity. Herein, we aimed to disclose the role of histamine in microglial phagocytic activity and reactive oxygen species (ROS) production and to explore the consequences of histamine-induced neuroinflammation in dopaminergic (DA) neuronal survival. Methods: The effect of histamine on phagocytosis was assessed both in vitro by using a murine N9 microglial cell line and primary microglial cell cultures and in vivo. Cells were exposed to IgG-opsonized latex beads or phosphatidylserine ( PS) liposomes to evaluate Fc gamma or PS receptor-mediated microglial phagocytosis, respectively. ROS production and protein levels of NADPH oxidases and Rac1 were assessed as a measure of oxidative stress. DA neuronal survival was evaluated in vivo by counting the number of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) of mice. Results: We found that histamine triggers microglial phagocytosis via histamine receptor 1 (H1R) activation and ROS production via H1R and H4R activation. By using apocynin, a broad NADPH oxidase (Nox) inhibitor, and Nox1 knockout mice, we found that the Nox1 signaling pathway is involved in both phagocytosis and ROS production induced by histamine in vitro. Interestingly, both apocynin and annexin V (used as inhibitor of PS-induced phagocytosis) fully abolished the DA neurotoxicity induced by the injection of histamine in the SN of adult mice in vivo. Blockade of H1R protected against histamine-induced Nox1 expression and death of DA neurons in vivo. Conclusions: Overall, our results highlight the relevance of histamine in the modulation of microglial activity that ultimately may interfere with neuronal survival in the context of Parkinson's disease (PD) and, eventually, other neurodegenerative diseases which are accompanied by microglia-induced neuroinflammation. Importantly, our results also open promising new perspectives for the therapeutic use of H1R antagonists to treat or ameliorate neurodegenerative processes.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Histamine H1 receptor activation stimulates mitogenesis in human astrocytoma U373 MG cells
    Hernández-Angeles, A
    Soria-Jasso, LE
    Ortega, A
    Arias-Montaño, JA
    JOURNAL OF NEURO-ONCOLOGY, 2001, 55 (02) : 81 - 89
  • [32] CONSTITUTIVE ACTIVITY OF THE HISTAMINE H1 RECEPTOR
    Nijmeijer, Saskia
    Leurs, Rob
    Vischer, Henry F.
    METHODS IN ENZYMOLOGY, VOLUME 484: CONSTITUTIVE ACTIVITY IN RECEPTORS AND OTHER PROTEINS, PART A, 2010, 484 : 127 - 147
  • [33] Expression of histamine H1 receptor in placenta
    K. Matsuyama
    N. Kawakami
    T. Ichikawa
    Y. Nitta
    K. Ishimura
    S. Horio
    H. Fukui
    Inflammation Research, 2004, 53 : S85 - S86
  • [34] Meranzin Hydrate Induces Similar Effect to Fructus Aurantii on Intestinal Motility through Activation of H1 Histamine Receptors
    Huang, Wei
    Huang, Xi
    Xing, Zhihua
    Qiu, Xinjian
    Wang, Yang
    Fan, Rong
    Liu, Weiping
    Ren, Ping
    Liu, Zhaoqian
    Zhou, Honghao
    JOURNAL OF GASTROINTESTINAL SURGERY, 2011, 15 (01) : 87 - 96
  • [35] Structure of the human Histamine H1 receptor
    Weyand, Simone
    Shimamura, Tatsuro
    Shiroishi, Mitsunori
    Tsujimoto, Hirokazu
    Winter, Graeme
    Katritch, Vsevolod
    Abagyan, Ruben
    Cherezov, Vadim
    Liu, Wei
    Han, Gye Won
    Kobayashi, Takuya
    Stevens, Raymond C.
    Iwata, So
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2012, 68 : S29 - S29
  • [36] Expression of histamine H1 receptor in placenta
    Matsuyama, K
    Kawakami, N
    Ichikawa, T
    Nitta, Y
    Ishimura, K
    Horio, S
    Fukui, H
    INFLAMMATION RESEARCH, 2004, 53 (Suppl 1) : S85 - S86
  • [37] Histamine via histamine H1 receptor enhances the muscarinic receptor-induced calcium response to acetylcholine in an enterochromaffin cell model
    Pfanzagl, Beatrix
    Pfragner, Roswitha
    Jensen-Jarolim, Erika
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2022, 49 (10) : 1059 - 1071
  • [38] Prothrombin Kringle-2 Induces Death of Mesencephalic Dopaminergic Neurons in Vivo and in Vitro Via Microglial Activation
    Kim, Sang Ryong
    Chung, Eun Sook
    Bok, Eugene
    Baik, Hung Hwan
    Chung, Young Cheul
    Won, So Yoon
    Joe, Eunhye
    Kim, Tae Hyong
    Kim, Soung Soo
    Jin, Min Young
    Choi, Sang Ho
    Jin, Byung Kwan
    JOURNAL OF NEUROSCIENCE RESEARCH, 2010, 88 (07) : 1537 - 1548
  • [39] Histamine Stimulates Hydrogen Peroxide Production by Bronchial Epithelial Cells via Histamine H1 Receptor and Dual Oxidase
    Rada, Balazs
    Boudreau, Howard E.
    Park, Jonathan J.
    Leto, Thomas L.
    AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2014, 50 (01) : 125 - 134
  • [40] The anorectic effect of neurotensin is mediated via a histamine H1 receptor in mice
    Ohinata, K
    Shimano, T
    Yamauchi, R
    Sakurada, S
    Yanai, K
    Yoshikawa, M
    PEPTIDES, 2004, 25 (12) : 2135 - 2138