A hackable, multi-functional, and modular extrusion 3D printer for soft materials

被引:23
作者
Lei, Iek Man [1 ,2 ]
Sheng, Yaqi [1 ,2 ]
Lei, Chon Lok [3 ,4 ]
Leow, Cillian [1 ]
Huang, Yan Yan Shery [1 ,2 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge, England
[2] Univ Cambridge, Nanosci Ctr, Cambridge, England
[3] Univ Macau, Fac Hlth Sci, Inst Translat Med, Macau, Peoples R China
[4] Univ Oxford, Dept Comp Sci, Oxford, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1038/s41598-022-16008-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional (3D) printing has emerged as a powerful tool for material, food, and life science research and development, where the technology's democratization necessitates the advancement of open-source platforms. Herein, we developed a hackable, multi-functional, and modular extrusion 3D printer for soft materials, nicknamed Printer.HM. Multi-printhead modules are established based on a robotic arm for heterogeneous construct creation, where ink printability can be tuned by accessories such as heating and UV modules. Software associated with Printer.HM were designed to accept geometry inputs including computer-aided design models, coordinates, equations, and pictures, to create prints of distinct characteristics. Printer.HM could further perform versatile operations, such as liquid dispensing, non-planar printing, and pick-and-place of meso-objects. By 'mix-and-match' software and hardware settings, Printer.HM demonstrated printing of pH-responsive soft actuators, plant-based functional hydrogels, and organ macro-anatomical models. Integrating affordability and open design, Printer.HM is envisaged to democratize 3D printing for soft, biological, and sustainable material architectures.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques [J].
Askari, Mohsen ;
Naniz, Moqaddaseh Afzali ;
Kouhi, Monireh ;
Saberi, Azadeh ;
Zolfagharian, Ali ;
Bodaghi, Mahdi .
BIOMATERIALS SCIENCE, 2021, 9 (03) :535-573
[2]  
Athira A., 2021, SELF ASSEMBLED HYDRO, DOI [10.1007/978-981-15-7138-1_14, DOI 10.1007/978-981-15-7138-1_14]
[3]   Nydus One Syringe Extruder (NOSE): A Prusa i3 3D printer conversion for bioprinting applications utilizing the FRESH-method [J].
Bessler, Nils ;
Ogiermann, Dennis ;
Buchholz, Maj-Britt ;
Santel, Alexander ;
Heidenreich, Jan ;
Ahmmed, Rawas ;
Zaehres, Holm ;
Brand-Saberi, Beate .
HARDWAREX, 2019, 6
[4]   Writing in the granular gel medium [J].
Bhattacharjee, Tapomoy ;
Zehnder, Steven M. ;
Rowe, Kyle G. ;
Jain, Suhani ;
Nixon, Ryan M. ;
Sawyer, W. Gregory ;
Angelini, Thomas E. .
SCIENCE ADVANCES, 2015, 1 (08)
[5]   3D printing for chemical, pharmaceutical and biological applications [J].
Capel, Andrew J. ;
Rimington, Rowan P. ;
Lewis, Mark P. ;
Christie, Steven D. R. .
NATURE REVIEWS CHEMISTRY, 2018, 2 (12) :422-436
[6]   3D Printing of Liquid Crystalline Hydroxypropyl Cellulose-toward Tunable and Sustainable Volumetric Photonic Structures [J].
Chan, Chun Lam Clement ;
Lei, Iek Man ;
van de Kerkhof, Gea T. ;
Parker, Richard M. ;
Richards, Kieran D. ;
Evans, Rachel C. ;
Huang, Yan Yan Shery ;
Vignolini, Silvia .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (15)
[7]   Bioprinting for the Biologist [J].
Daly, Andrew C. ;
Prendergast, Margaret E. ;
Hughes, Alex J. ;
Burdick, Jason A. .
CELL, 2021, 184 (01) :18-32
[8]   An open source extrusion bioprinter based on the E3D motion system and tool changer to enable FRESH and multimaterial bioprinting [J].
Engberg, Adam ;
Stelzl, Christina ;
Eriksson, Olle ;
O'Callaghan, Paul ;
Kreuger, Johan .
SCIENTIFIC REPORTS, 2021, 11 (01)
[9]   State-of-art affordable bioprinters: A guide for the DiY community [J].
Garciamendez-Mijares, Carlos Ezio ;
Agrawal, Prajwal ;
Garcia Martinez, German ;
Cervantes Juarez, Ernesto ;
Zhang, Yu Shrike .
APPLIED PHYSICS REVIEWS, 2021, 8 (03)
[10]  
Gladman AS, 2016, NAT MATER, V15, P413, DOI [10.1038/NMAT4544, 10.1038/nmat4544]