Center problem for generic degenerate vector fields

被引:1
作者
Algaba, Antonio [1 ]
Diaz, Maria [1 ]
Garcia, Cristobal [1 ]
Gine, Jaume [2 ]
机构
[1] Univ Huelva, Fac Ciencias, Dept Matemat, Huelva, Spain
[2] Univ Lleida, Dept Matemat, Av Jaume 2 69, Lleida 25001, Catalonia, Spain
关键词
Center problem; Degenerate vectors; Monodromy; Characteristic directions; FOCUS-CENTER PROBLEM; ANALYTIC INTEGRABILITY; DIFFERENTIAL-EQUATIONS; NILPOTENT; MONODROMY; SYSTEMS; STABILITY; ALGORITHM;
D O I
10.1016/j.na.2021.112597
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the method of construction of an integrating factor for Abel differential equations, developed in Briskin et al. (1998), for any generic monodromic singularity. Here generic means that the vector field has not characteristic directions in the quasi-homogeneous leading term in certain coordinates. We apply this method to some degenerate differential systems. (C) 2021 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:23
相关论文
共 46 条
[31]  
Gine J., 2012, INT J BIFUR CHAOS AP, V22
[32]   ON THE DEGENERATE CENTER PROBLEM [J].
Gine, Jaume .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (05) :1383-1392
[33]  
Il'yashenko Yu., 1972, FUNCT ANAL PRILOZ, V6, P30
[34]  
Il'yashenko Yu. S., 1991, TRANSLATIONS MATH MO, V94
[35]  
Jeffrey A., 2007, Table of Integrals, Series, and Products
[36]   Bifurcation of limit cycles and center problem for p:q homogeneous weight systems [J].
Liu, Tao ;
Li, Feng ;
Liu, Yirong ;
Li, Shimin ;
Wang, Jing .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 46 :257-273
[37]  
LYAPUNOV AM, 1966, MATH SCI ENG, V30
[38]   On the center problem for degenerate singular points of planar vector fields [J].
Mañosa, V .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (04) :687-707
[39]  
MATTEI JF, 1980, ANN SCI ECOLE NORM S, V13, P469
[40]   A CHARACTERIZATION OF CENTERS VIA 1ST INTEGRALS [J].
MAZZI, L ;
SABATINI, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 76 (02) :222-237