Efficient CO2 capture from the air for high microalgal biomass production by a bicarbonate Pool

被引:50
作者
Zhu, Chenba [1 ,2 ]
Zhai, Xiaoqian [1 ]
Xi, Yimei [1 ]
Wang, Jinghan [1 ]
Kong, Fantao [1 ]
Zhao, Yunpeng [2 ]
Chi, Zhanyou [1 ]
机构
[1] Dalian Univ Technol, Sch Bioengn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CO(2)capture; Air; Bicarbonate; Microalgae; CARBONIC-ANHYDRASE ACTIVITY; MASS-TRANSFER; PRODUCTION SYSTEM; RACEWAY REACTORS; POROUS CARBONS; DIOXIDE; CULTIVATION; PHOTOBIOREACTOR; BIOFIXATION; SEQUESTRATION;
D O I
10.1016/j.jcou.2019.12.023
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Direct air capture (DAC) of CO2 from ambient air based on alkaline sorbents has great potential, but regenerating sorbents with physiochemical methods is energy-intensive. With free solar energy, however, sorbents can be regenerated with the consumption of CO2 during photosynthesis by microalgae, but this regeneration is limited by the low efficiency of CO2 capture from air, which is also the primary reason for the high cost of microalgae production. In this study, 100 - 500 mmol L-1 bicarbonate with a pH of 10.0-12.5 was used to efficiently capture CO2 from the air, store it as a bicarbonate pool, and rapidly supply CO2 during photosynthesis. The initial pH and bicarbonate concentration significantly affected biomass productivity and the carbon-capture rate, with maxima of 1.00 and 0.81 g L-1 d(-1), respectively, indicating the high efficiency of this process. This process that can be completely driven by renewable energy in future, such as wave energy, will significantly reduce costs and facilitate both carbon capture and microalgae production in an environmental friendly manner.
引用
收藏
页码:320 / 327
页数:8
相关论文
共 55 条
  • [1] Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply
    Aikawa, Shimpei
    Izumi, Yoshihiro
    Matsuda, Fumio
    Hasunuma, Tomohisa
    Chang, Jo-Shu
    Kondo, Akihiko
    [J]. BIORESOURCE TECHNOLOGY, 2012, 108 : 211 - 215
  • [2] State of the Climate in 2016
    Arndt, D. S.
    Blunden, J.
    Dunn, R. J. H.
    Aaron-Morrison, Arlene P.
    Abdallah, A.
    Ackerman, Steven A.
    Adler, Robert
    Alfaro, Eric J.
    Allan, Richard P.
    Allan, Rob
    Alvarez, Luis A.
    Alves, Lincoln M.
    Amador, Jorge A.
    Andreassen, L. M.
    Arce, Dayana
    Argueez, Anthony
    Arndt, Derek S.
    Arzhanova, N. M.
    Augustine, John
    Awatif, E. M.
    Azorin-Molina, Cesar
    Baez, Julian
    Bardin, M. U.
    Barichivich, Jonathan
    Baringer, Molly O.
    Barreira, Sandra
    Baxter, Stephen
    Beck, H. E.
    Becker, Andreas
    Bedka, Kristopher M.
    Behrenfeld, Michael J.
    Bell, Gerald D.
    Belmont, M.
    Benedetti, Angela
    Bernhard, G. H.
    Berrisford, Paul
    Berry, David I.
    Bettolli, Maria L.
    Bhatt, U. S.
    Bidegain, Mario
    Biskaborn, B.
    Bissolli, Peter
    Bjerke, J.
    Blake, Eric S.
    Blunden, Jessica
    Bosilovich, Michael G.
    Boucher, Olivier
    Boudet, Dagne
    Box, J. E.
    Boyer, Tim
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2017, 98 (08) : S1 - S277
  • [3] CO2 concentrating mechanisms in cyanobacteria:: molecular components, their diversity and evolution
    Badger, MR
    Price, GD
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 (383) : 609 - 622
  • [4] CO2 biofixation and carbonic anhydrase activity in Scenedesmus obliquus SA1 cultivated in large scale open system
    Basu, Samarpita
    Roy, Abhijit Sarma
    Mohanty, Kaustubha
    Ghoshal, Aloke K.
    [J]. BIORESOURCE TECHNOLOGY, 2014, 164 : 323 - 330
  • [5] LIPID AND BIOMASS PRODUCTION BY THE HALOTOLERANT MICROALGA NANNOCHLOROPSIS-SALINA
    BOUSSIBA, S
    VONSHAK, A
    COHEN, Z
    AVISSAR, Y
    RICHMOND, A
    [J]. BIOMASS, 1987, 12 (01): : 37 - 47
  • [6] Multi-faceted particle pumps drive carbon sequestration in the ocean
    Boyd, Philip W.
    Claustre, Herve
    Levy, Marina
    Siegel, David A.
    Weber, Thomas
    [J]. NATURE, 2019, 568 (7752) : 327 - 335
  • [7] Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power
    Brethome, Flavien M.
    Williams, Neil J.
    Seipp, Charles A.
    Kidder, Michelle K.
    Custelcean, Radu
    [J]. NATURE ENERGY, 2018, 3 (07): : 553 - 559
  • [8] Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology
    Canon-Rubio, Karen A.
    Sharp, Christine E.
    Bergerson, Joule
    Strous, Marc
    De la Hoz Siegler, Hector
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 100 (04) : 1611 - 1622
  • [9] Microalgal reactors: A review of enclosed system designs and performances
    Carvalho, Ana P.
    Meireles, Luis A.
    Malcata, F. Xavier
    [J]. BIOTECHNOLOGY PROGRESS, 2006, 22 (06) : 1490 - 1506
  • [10] Microalgal lipids production and nutrients recovery from landfill leachate using membrane photobioreactor
    Chang, Haixing
    Fu, Qian
    Zhong, Nianbing
    Yang, Xin
    Quan, Xuejun
    Li, Shuo
    Fu, Jingwei
    Xiao, Chao
    [J]. BIORESOURCE TECHNOLOGY, 2019, 277 : 18 - 26