Annealing in the Noisy Intermediate-Scale Quantum Era: Key concepts and approaches

被引:3
作者
Yu, Lien-Po [1 ]
Chen, Chih-Yu [2 ]
Lai, Chao-Sung [3 ]
Sheu, Bing [3 ]
Kao, Shao-Ku [3 ]
Chang, Ching-Ray [4 ]
机构
[1] Inst Informat Ind, Adv Res Ctr, Taipei 10622, Taiwan
[2] Chung Yuan Christian Univ, Undergrad Program Appl Artificial Intelligence, Taoyuan 320314, Taiwan
[3] Chang Gung Univ, Coll Engn, Taoyuan 33302, Taiwan
[4] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
关键词
Quantum computers - Combinatorial optimization - Annealing - Cost functions;
D O I
10.1109/MNANO.2021.3113217
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the noisy intermediate-scale quantum (NISQ) era, annealing-based computing is emerging as a new type of high-performance computing (HPC) technology for solving computationally intractable combinatorial optimization problems (COPs). Inspired by thermal annealing in metallurgy, the cost function of a COP is encoded in an energy function (Hamiltonian), with its lowest energy state being searched using an annealer and finally transformed to the global or global approximate optimal solution to a target problem. We address the key technology underlying annealing-based methods along with an experimental study with a commercial digital annealer (DA). We hope to shed light on how industries could benefit from this emerging computing technology to explore the challenges and opportunities in the quantum computing age. © 2007-2011 IEEE.
引用
收藏
页码:21 / 27
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 2021, FUJITSU QUANT INSP C, V2nd
[2]  
Apolloni B., 1988, Stochastic Processes, Physics and Geometry
[3]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476
[4]  
Farhi E., 2014, A quantum approximate optimization algorithm
[5]   Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models [J].
Glover, Fred ;
Kochenberger, Gary ;
Du, Yu .
4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2019, 17 (04) :335-371
[6]   High-performance combinatorial optimization based on classical mechanics [J].
Goto, Hayato ;
Endo, Kotaro ;
Suzuki, Masaru ;
Sakai, Yoshisato ;
Kanao, Taro ;
Hamakawa, Yohei ;
Hidaka, Ryo ;
Yamasaki, Masaya ;
Tatsumura, Kosuke .
SCIENCE ADVANCES, 2021, 7 (06)
[7]   Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems [J].
Goto, Hayato ;
Tatsumura, Kosuke ;
Dixon, Alexander R. .
SCIENCE ADVANCES, 2019, 5 (04)
[8]   Quantum annealing in the transverse Ising model [J].
Kadowaki, T ;
Nishimori, H .
PHYSICAL REVIEW E, 1998, 58 (05) :5355-5363
[9]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680
[10]   Quantum optimization using variational algorithms on near-term quantum devices [J].
Moll, Nikolaj ;
Barkoutsos, Panagiotis ;
Bishop, Lev S. ;
Chow, Jerry M. ;
Cross, Andrew ;
Egger, Daniel J. ;
Filipp, Stefan ;
Fuhrer, Andreas ;
Gambetta, Jay M. ;
Ganzhorn, Marc ;
Kandala, Abhinav ;
Mezzacapo, Antonio ;
Mueller, Peter ;
Riess, Walter ;
Salis, Gian ;
Smolin, John ;
Tavernelli, Ivano ;
Temme, Kristan .
QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03)