Fisher Information in Noisy Intermediate-Scale Quantum Applications

被引:70
作者
Meyer, Johannes Jakob [1 ,2 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[2] Univ Copenhagen, Dept Math Sci, QMATH, DK-2100 Copenhagen O, Denmark
来源
QUANTUM | 2021年 / 5卷
关键词
ERROR;
D O I
10.22331/q-2021-09-09-539
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The recent advent of noisy intermediate-scale quantum devices, especially near-term quantum computers, has sparked extensive research efforts concerned with their possible applications. At the forefront of the considered approaches are variational methods that use parametrized quantum circuits. The classical and quantum Fisher information are firmly rooted in the field of quantum sensing and have proven to be versatile tools to study such parametrized quantum systems. Their utility in the study of other applications of noisy intermediate-scale quantum devices, however, has only been discovered recently. Hoping to stimulate more such applications, this article aims to further popularize classical and quantum Fisher information as useful tools for near-term applications beyond quantum sensing. We start with a tutorial that builds an intuitive understanding of classical and quantum Fisher information and outlines how both quantities can be calculated on near-term devices. We also elucidate their relationship and how they are influenced by noise processes. Next, we give an overview of the core results of the quantum sensing literature and proceed to a comprehensive review of recent applications in variational quantum algorithms and quantum machine learning.
引用
收藏
页数:30
相关论文
共 58 条
[1]   A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging [J].
Albarelli, F. ;
Barbieri, M. ;
Genoni, M. G. ;
Gianani, I .
PHYSICS LETTERS A, 2020, 384 (12)
[2]  
[Anonymous], 2010, QUANTUM COMPUTATION, DOI [DOI 10.1017/CBO9780511976667, 10.1017/CBO9780511976667.]
[3]  
[Anonymous], 2020, PHYS REV X, DOI DOI 10.1103/PHYSREVX.10.031023
[4]  
[Anonymous], 2020, J PHYS MATH THEORETI, DOI DOI 10.1088/1751-8121/AB599B
[5]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[6]   Fisher information in quantum statistics [J].
Barndorff-Nielsen, OE ;
Gill, RD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (24) :4481-4490
[7]   A scalable maximum likelihood method for quantum state tomography [J].
Baumgratz, T. ;
Nuesseler, A. ;
Cramer, M. ;
Plenio, M. B. .
NEW JOURNAL OF PHYSICS, 2013, 15
[8]  
Beckey JL., 2020, ARXIV201010488
[9]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[10]  
Benjamin, 2020, ARXIV191208660