Strong asymptotics for relativistic Hermite polynomials

被引:4
作者
Gawronski, W [1 ]
Van Assche, W
机构
[1] Univ Trier, Abt Math, D-54286 Trier, Germany
[2] Katholieke Univ Leuven, Dept Wiskunde, B-3001 Louvain, Belgium
关键词
D O I
10.1216/rmjm/1181069964
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Strong asymptotic results for relativistic Hermite polynomials H-n(N) (z) are established as n, N --> infinity, for the cases where N = an + alpha + 1/2, a greater than or equal to 0, alpha > - 1, or N/n --> infinity, thereby supplementing recent results on weak asymptotics for these polynomials. Depending on growth properties of the ratio N/n for the resealed polynomials H-n(N)(c(n)z) (c(n) being suitable positive numbers, n, N --> infinity), formulae of Plancherel-Rotach type are derived on the oscillatory interval, in the complex plane away from the oscillatory region, and near the endpoints of the oscillatory interval.
引用
收藏
页码:489 / 524
页数:36
相关论文
共 22 条
[1]   THE QUANTUM RELATIVISTIC HARMONIC-OSCILLATOR - GENERALIZED HERMITE-POLYNOMIALS [J].
ALDAYA, V ;
BISQUERT, J ;
NAVARROSALAS, J .
PHYSICS LETTERS A, 1991, 156 (7-8) :381-385
[2]  
Bosbach C., 1999, METHODS APPL ANAL, V6, P39
[3]   ON ASYMPTOTICS OF JACOBI-POLYNOMIALS [J].
CHEN, LC ;
ISMAIL, MEH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (05) :1442-1449
[4]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1491, DOI 10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.3.CO
[5]  
2-R
[6]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1335, DOI 10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO
[7]  
2-1
[8]  
DEIFT P, 2000, COURANT LECT NOTES, V3, P1999
[9]  
Dette H, 1999, ANN STAT, V27, P1272
[10]   ON THE LIMIT DISTRIBUTIONS OF THE ZEROS OF JONQUIERE POLYNOMIALS AND GENERALIZED CLASSICAL ORTHOGONAL POLYNOMIALS [J].
FALDEY, J ;
GAWRONSKI, W .
JOURNAL OF APPROXIMATION THEORY, 1995, 81 (02) :231-249