Shear Wave Propagation and Estimation of Material Parameters in a Nonlinear, Fibrous Material

被引:15
|
作者
Hou, Zuoxian [1 ]
Okamoto, Ruth J. [1 ]
Bayly, Philip, V [1 ]
机构
[1] Washington Univ, Dept Mech Engn & Mat Sci, St Louis, MO 63130 USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2020年 / 142卷 / 05期
关键词
MAGNETIC-RESONANCE ELASTOGRAPHY; BRAIN WHITE-MATTER; MECHANICAL-PROPERTIES; MR ELASTOGRAPHY; LIVER STIFFNESS; TISSUES; MODEL;
D O I
10.1115/1.4044504
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This paper describes the propagation of shear waves in a Holzapfel-Gasser-Ogden (HGO) material and investigates the potential of magnetic resonance elastography (MRE) for estimating parameters of the HGO material model from experimental data. In most MRE studies the behavior of the material is assumed to be governed by linear, isotropic elasticity or viscoelasticity. In contrast, biological tissue is often nonlinear and anisotropic with a fibrous structure. In such materials, application of a quasi-static deformation (predeformation) plays an important role in shear wave propagation. Closed form expressions for shear wave speeds in an HGO material with a single family of fibers were found in a reference (undeformed) configuration and after imposed predeformations. These analytical expressions show that shear wave speeds are affected by the parameters (mu,kappa(1),kappa(2),kappa) of the HGO model and by the direction and amplitude of the predeformations. Simulations of corresponding finite element (FE) models confirm the predicted influence of HGO model parameters on speeds of shear waves with specific polarization and propagation directions. Importantly, the dependence of wave speeds on the parameters of the HGO model and imposed deformations could ultimately allow the noninvasive estimation of material parameters in vivo from experimental shear wave image data.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Stochastic finite element framework for simultaneous estimation of cardiac kinematic functions and material parameters
    Shi, PC
    Liu, HF
    MEDICAL IMAGE ANALYSIS, 2003, 7 (04) : 445 - 464
  • [22] Estimation of material properties of nanocomposite structures
    Brcic, Marino
    Canadija, Marko
    Brnic, Josip
    MECCANICA, 2013, 48 (09) : 2209 - 2220
  • [23] Nonlinear material functions under medium amplitude oscillatory shear (MAOS) flow
    Song, Hyeong Yong
    Hyun, Kyu
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2019, 31 (04) : 267 - 284
  • [24] Material Characterization of In Vivo and In Vitro Porcine Brain using Shear Wave Elasticity
    Urbanczyk, Caryn
    Palmeri, Mark
    Bass, Cameron R. 'Dale'
    2013 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2013, : 21 - 24
  • [25] Nonlinear relationship between the fatigue limit and quantitative parameters of material microstructure
    Herasymchuk, O. M.
    INTERNATIONAL JOURNAL OF FATIGUE, 2011, 33 (04) : 649 - 659
  • [26] Using transient shear rheology to determine material parameters in fiber suspension theory
    Eberle, Aaron P. R.
    Baird, Donald G.
    Wapperom, Peter
    Velez-Garcia, Gregorio M.
    JOURNAL OF RHEOLOGY, 2009, 53 (03) : 685 - 705
  • [27] Uncertainty propagation and sensitivity analysis of a composite material wave energy converter structure
    Calvario, M.
    Guedes Soares, C.
    TRENDS IN MARITIME TECHNOLOGY AND ENGINEERING, MARTECH 2022, VOL 1, 2022, 8 : 69 - 77
  • [28] Effects of the microstructure and density profiles on wave propagation across an interface with material properties
    Scala, I.
    Rosi, G.
    Placidi, L.
    Nguyen, V. -H.
    Naili, S.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2019, 31 (04) : 1165 - 1180
  • [29] Characterization of Material Parameters
    Kabir, S. M. Humayun
    Yeo, Tae-In
    Kim, Sang-Ho
    WORLD CONGRESS ON ENGINEERING 2009, VOLS I AND II, 2009, : 1538 - 1543
  • [30] Propagation of material behavior uncertainty in a nonlinear finite element model of reconstructive surgery
    Lee, Taeksang
    Turin, Sergey Y.
    Gosain, Arun K.
    Bilionis, Ilias
    Tepole, Adrian Buganza
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2018, 17 (06) : 1857 - 1873