A Local Method for Canonical Correlation Analysis

被引:2
作者
Ye, Tengju [1 ]
Xie, Zhipeng [1 ]
Li, Ang [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China
来源
NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2015 | 2015年 / 9362卷
关键词
Local linearity; Multivariate analysis; Cross-modal multimedia retrieval; REDUCTION;
D O I
10.1007/978-3-319-25207-0_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Canonical Correlation Analysis (CCA) is a standard statistical technique for finding linear projections of two arbitrary vectors that are maximally correlated. In complex situations, the linearity of CCA is not applicable. In this paper, we propose a novel local method for CCA to handle the non-linear situations. We aim to find a series of local linear projections instead of a single globe one. We evaluate the performance of our method and CCA on two real-world datasets. Our experiments show that local method outperforms original CCA in several realistic cross-modal multimedia retrieval tasks.
引用
收藏
页码:428 / 435
页数:8
相关论文
共 20 条
[11]   On the Role of Correlation and Abstraction in Cross-Modal Multimedia Retrieval [J].
Costa Pereira, Jose ;
Coviello, Emanuele ;
Doyle, Gabriel ;
Rasiwasia, Nikhil ;
Lanckriet, Gert R. G. ;
Levy, Roger ;
Vasconcelos, Nuno .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (03) :521-535
[12]  
Friedman J., 2001, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, V1
[13]   Canonical correlation analysis: An overview with application to learning methods [J].
Hardoon, DR ;
Szedmak, S ;
Shawe-Taylor, J .
NEURAL COMPUTATION, 2004, 16 (12) :2639-2664
[14]   Nonlinear canonical correlation analysis by neural networks [J].
Hsieh, WW .
NEURAL NETWORKS, 2000, 13 (10) :1095-1105
[15]   Dimension reduction by local principal component analysis [J].
Kambhatla, N ;
Leen, TK .
NEURAL COMPUTATION, 1997, 9 (07) :1493-1516
[16]  
Lee J., 2013, P INT C MACH LEARN, P82
[17]   Nonlinear dimensionality reduction by locally linear embedding [J].
Roweis, ST ;
Saul, LK .
SCIENCE, 2000, 290 (5500) :2323-+
[18]  
Thompson B., 2005, ENCY STAT BEHAV SCI, DOI DOI 10.1002/0470013192.BSA068
[19]  
Vinokourov Alexei, 2002, P 16 ANN C NEUR INF, P1473
[20]  
Zheng N., 2007, Computer vision and pattern recognition