CLASSIFICATION OF MULTIPLICATIVE LIE ALGEBRA STRUCTURES ON A FINITE GROUP

被引:7
作者
Pandey, Mani Shankar [1 ]
Upadhyay, Sumit Kumar [1 ]
机构
[1] Indian Inst Informat Technol Allahabad, Dept Appl Sci, Prayagraj, UP, India
关键词
multiplicative Lie algebra; Lie simple group; Schur multiplier; commutator; exterior square;
D O I
10.4064/cm8397-12-2020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every multiplicative Lie algebra structure on a group G determines a group homomorphism from the exterior square G perpendicular to G to G. We give a precise characterization of the group homomorphisms G perpendicular to G -> G which determine a multiplicative Lie algebra structure on G. For certain finite groups, we determine the number of possible images (up to isomorphism) of such structure-defining maps.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 7 条
[1]   SOME COMPUTATIONS OF NON-ABELIAN TENSOR-PRODUCTS OF GROUPS [J].
BROWN, R ;
JOHNSON, DL ;
ROBERTSON, EF .
JOURNAL OF ALGEBRA, 1987, 111 (01) :177-202
[2]   Non-abelian tensor and exterior products of multiplicative Lie rings [J].
Donadze, Guram ;
Inassaridze, Nick ;
Ladra, Manuel .
FORUM MATHEMATICUM, 2017, 29 (03) :563-574
[3]   ON 5 WELL-KNOWN COMMUTATOR IDENTITIES [J].
ELLIS, GJ .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1993, 54 :1-19
[4]  
Karpilovsky G, 1987, THE SCHUR MULTIPLIER, V2
[5]   Multiplicative Lie algebras and Schur multiplier [J].
Lal, Ramji ;
Upadhyay, Sumit Kumar .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (09) :3695-3721
[6]  
MIAH SH, 1975, J LOND MATH SOC, V9, P549
[7]  
Rashid S, 2012, INT J APPL MATH STAT, V28, P18