Fault diagnosis and prediction of complex system based on Hidden Markov model

被引:8
|
作者
Li, Chen [1 ]
Wei, Fajie [1 ]
Wang, Cheng [1 ]
Zhou, Shenghan [2 ]
机构
[1] Beihang Univ, Sch Econ & Management, Beijing, Peoples R China
[2] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex system; Hidden Markov model; fault diagnosis; fault prediction;
D O I
10.3233/JIFS-169344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To guarantee the performance and security of the complex system, in this paper, we focus on the problem of fault diagnosis and fault prediction method for the complex system. The proposed fault diagnosis and prediction system is made up of three parts: 1) Data preprocessing, 2) Degradation state detection, and 3) Fault diagnosis. Afterwards, we exploit the Wavelet transform correlation filter to extract features for complex system fault diagnosis and prediction. Particularly, the direct spatial correlations of wavelet transform contents are used to search the locations of edges. To promote the performance of Hidden Markov model, we propose a HMM-based semi-nonparametric method by the probabilistic transition frequency profile matrix and the average probabilistic emission matrix. Then, the training sequence which is the most similar to a particular sequence can be found by the modified HMM model. Finally, experimental results prove that the proposed algorithm can effectively enhance the accuracy of equipment fault diagnosis and equipment state recognition task.
引用
收藏
页码:2937 / 2944
页数:8
相关论文
共 50 条
  • [31] Research on fault diagnosis for gear-box based on factorial hidden Markov model
    Wang Xue
    Xie Zhijiang
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MECHANICAL TRANSMISSIONS, VOLS 1 AND 2, 2006, : 1308 - 1311
  • [32] Hidden Markov Model based Stochastic Resonance and its Application to Bearing Fault Diagnosis
    Lopez, Cristian
    Naranjo, Angel
    Lu, Siliang
    Moore, Keegan J.
    JOURNAL OF SOUND AND VIBRATION, 2022, 528
  • [33] Hidden Markov model-based algorithm for fault diagnosis with partial and imperfect tests
    Ying, Jie
    Kirubarajan, T.
    Pattipati, Krishna R.
    Patterson-Hine, Ann
    2000, Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA (30):
  • [34] Fatigue crack fault diagnosis and prognosis based on hidden semi-Markov model
    Fan, Lei
    Wang, Shaoping
    Duan, Haibin
    Ran, Hongliang
    JOURNAL OF ENGINEERING-JOE, 2019, (13): : 406 - 410
  • [35] Fault Diagnosis and Prognosis of Bearing Based on Hidden Markov Model with Multi-Features
    Zhao, Weiguo
    Shi, Tiancong
    Wang, Liying
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (01) : 71 - 84
  • [36] Fault Pattern Recognition Based on Hidden Markov Model
    刘鑫
    贾云献
    范智滕
    田霞
    张英波
    JournalofDonghuaUniversity(EnglishEdition), 2016, 33 (02) : 280 - 283
  • [37] Fault diagnosis of body sensor networks using hidden Markov model
    Haibin Zhang
    Jiajia Liu
    Rong Li
    Hua Le
    Peer-to-Peer Networking and Applications, 2017, 10 : 1285 - 1298
  • [38] Diagnosis of mechanical fault signals using continuous hidden Markov model
    Lee, JM
    Kim, SJ
    Hwang, Y
    Song, CS
    JOURNAL OF SOUND AND VIBRATION, 2004, 276 (3-5) : 1065 - 1080
  • [39] Application of Hidden Markov Model to Fault Diagnosis of Power Electronic Circuit
    Yan Ren-Wu
    Cai Jin-Ding
    IEEE CIRCUITS AND SYSTEMS INTERNATIONAL CONFERENCE ON TESTING AND DIAGNOSIS, 2009, : 132 - 135
  • [40] Application of KPCA and coupled hidden Markov model in bearing fault diagnosis
    Chen, Jin, 1600, Chinese Vibration Engineering Society (33):