Rational Design of Cellulose Nanofibrils Separator for Sodium-Ion Batteries

被引:13
|
作者
Zhou, Hongyang [1 ]
Gu, Jin [1 ]
Zhang, Weiwei [1 ]
Hu, Chuanshuang [1 ]
Lin, Xiuyi [1 ]
机构
[1] South China Agr Univ, Coll Mat & Energy, Key Lab Biobased Mat & Energy, Minist Educ, 483 Wushan Rd, Guangzhou 510642, Peoples R China
来源
MOLECULES | 2021年 / 26卷 / 18期
关键词
cellulose nanofiber; sodium-ion batteries; separators; pore structure; PERFORMANCE; SURFACE;
D O I
10.3390/molecules26185539
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cellulose nanofibrils (CNF) with high thermal stability and excellent electrolyte wettability attracted tremendous attention as a promising separator for the emerging sodium-ion batteries. The pore structure of the separator plays a vital role in electrochemical performance. CNF separators are assembled using the bottom-up approach in this study, and the pore structure is carefully controlled through film-forming techniques. The acid-treated separators prepared from the solvent exchange and freeze-drying demonstrated an optimal pore structure with a high electrolyte uptake rate (978.8%) and Na+ transference number (0.88). Consequently, the obtained separator showed a reversible specific capacity of 320 mAh/g and enhanced cycling performance at high rates compared to the commercial glass fiber separator (290 mAh/g). The results highlight that CNF separators with an optimized pore structure are advisable for sodium-ion batteries.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Rational design of Sn/SnO2/porous carbon nanocomposites as anode materials for sodium-ion batteries
    Li, Xiaojia
    Li, Xifei
    Fan, Linlin
    Yu, Zhuxin
    Yan, Bo
    Xiong, Dongbin
    Song, Xiaosheng
    Li, Shiyu
    Adair, Keegan R.
    Li, Dejun
    Sun, Xueliang
    APPLIED SURFACE SCIENCE, 2017, 412 : 170 - 176
  • [42] Rational design of MXene-MoS2 heterostructure with rapid ion transport rate as an advanced anode for sodium-ion batteries
    Wang, Tian
    Yao, Kai
    Hua, Yongbin
    Shankar, Edugulla Girija
    Shanthappa, R.
    Yu, Jae Su
    CHEMICAL ENGINEERING JOURNAL, 2023, 457
  • [43] Biomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors
    Zhu, Jianhui
    Roscow, James
    Chandrasekaran, Sundaram
    Deng, Libo
    Zhang, Peixin
    He, Tingshu
    Wang, Kuo
    Huang, Licong
    CHEMSUSCHEM, 2020, 13 (06) : 1275 - 1295
  • [44] Design of a Single-Ion Conducting Polymer Electrolyte for Sodium-Ion Batteries
    Liu, Kewei
    Xie, Yingying
    Yang, Zhenzhen
    Kim, Hong-Keun
    Dzwiniel, Trevor L.
    Yang, Jianzhong
    Xiong, Hui
    Liao, Chen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (12)
  • [45] Rational Design of Hollow Structural Materials for Sodium-Ion Battery Anodes
    Qin, Chu
    Jiang, Zhong-Jie
    Maiyalagan, Thandavarayan
    Jiang, Zhongqing
    CHEMICAL RECORD, 2024, 24 (01):
  • [46] Flexible Electrospun Polyacrylonitrile/ZnO Nanofiber Membrane as Separator for Sodium-Ion Batteries with Cycle Stability
    Mu, Xin
    Yin, Xiangyu
    Qi, Meili
    Yusuf, Abdulla
    Liu, Shibin
    COATINGS, 2025, 15 (02):
  • [47] High-Efficiency Separator Capacity-Compensation Strategy Applied to Sodium-Ion Batteries
    Mao, Yue
    Zhou, Chaoyi
    Gong, Haochen
    Zhang, Shaojie
    Wang, Xiaoyi
    Liu, Xinyi
    Xiang, Qianxin
    Sun, Jie
    SMALL, 2023, 19 (46)
  • [48] Sodium-ion batteries: present and future
    Hwang, Jang-Yeon
    Myung, Seung-Taek
    Sun, Yang-Kook
    CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) : 3529 - 3614
  • [49] Conversion reactions for sodium-ion batteries
    Klein, Franziska
    Jache, Birte
    Bhide, Amrtha
    Adelhelm, Philipp
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (38) : 15876 - 15887
  • [50] Advancement in sodium-ion rechargeable batteries
    Tang, Jialiang
    Dysart, Arthur D.
    Pol, Vilas G.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2015, 9 : 34 - 41