Gas Phase Electrodeposition: A Programmable Multimaterial Deposition Method for Combinatorial Nanostructured Device Discovery

被引:21
作者
Lin, En-Chiang [1 ]
Cole, Jesse J. [1 ]
Jacobs, Heiko O. [1 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Programmable electrodeposition; arc discharge; atmospheric pressure gas phase deposition; nanoparticle nanostructured electrodes; combinatory device discovery; printable flexible electronics; plasmas and aerosols; SOLAR-CELLS; NANOPARTICLES; GROWTH; AIR;
D O I
10.1021/nl102344r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article reports and applies a recently discovered programmable multimaterial deposition process to the formation and combinatorial improvement of 3D nanostructured devices. The gas-phase deposition process produces charged <5 nm particles of silver, tungsten, and platinum and uses externally biased electrodes to control the material flux and to turn deposition ON/OFF in selected domains. Domains host nanostructured dielectrics to define arrays of electrodynamic 10x nanolenses to further control the flux to form <100 rim resolution deposits. The unique feature of the process is that material type, amount, and sequence can be altered from one domain to the next leading to different types of nanostructures including multimaterial bridges, interconnects, or nanowire arrays with 20 nm positional accuracy. These features enable combinatorial nanostructurecl materials and device discovery. As a first demonstration, we produce and identify in a combinatorial way 3D nanostructured electrode designs that improve light scattering, absorption, and minority carrier extraction of bulk heterojunction photovoltaic cells. Photovoltaic cells from domains with long and dense nanowire arrays improve the relative power conversion efficiency by 47% when compared to flat domains on the same substrate.
引用
收藏
页码:4494 / 4500
页数:7
相关论文
共 38 条
[1]   Aerosol focusing in micro-capillaries: Theory and experiment [J].
Akhatov, I. S. ;
Hoey, J. M. ;
Swenson, O. F. ;
Schulz, D. L. .
JOURNAL OF AEROSOL SCIENCE, 2008, 39 (08) :691-709
[2]  
ALEKSANDROV N, 1999, BAZELYAN F PLASMA SO, V8, P285
[3]   Simulation of long-streamer propagation in air at atmospheric pressure [J].
Aleksandrov, NL ;
Bazelyan, EM .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1996, 29 (03) :740-752
[4]   Printing nanoparticles from the liquid and gas phases using nanoxerography [J].
Barry, CR ;
Steward, MG ;
Lwin, NZ ;
Jacobs, HO .
NANOTECHNOLOGY, 2003, 14 (10) :1057-1063
[5]  
BRABEC CJ, 2001, J C ADV ELMO MAT II, V11, P374
[6]   Size classification of silicon nanocrystals [J].
Camata, RP ;
Atwater, HA ;
Vahala, KJ ;
Flagan, RC .
APPLIED PHYSICS LETTERS, 1996, 68 (22) :3162-3164
[7]   Continuous nanoparticle generation and assembly by atmospheric pressure arc discharge [J].
Cole, Jesse J. ;
Lin, En-Chiang ;
Barry, Chad R. ;
Jacobs, Heiko O. .
APPLIED PHYSICS LETTERS, 2009, 95 (11)
[8]   Focused nanoparticle-beam deposition of patterned microstructures [J].
Di Fonzo, F ;
Gidwani, A ;
Fan, MH ;
Neumann, D ;
Iordanoglou, DI ;
Heberlein, JVR ;
McMurry, PH ;
Girshick, SL ;
Tymiak, N ;
Gerberich, WW ;
Rao, NP .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :910-912
[9]   Formation of ordered nanoscale semiconductor dots by ion sputtering [J].
Facsko, S ;
Dekorsy, T ;
Koerdt, C ;
Trappe, C ;
Kurz, H ;
Vogt, A ;
Hartnagel, HL .
SCIENCE, 1999, 285 (5433) :1551-1553
[10]   HIGH-RATE, GAS-PHASE GROWTH OF MOS2 NESTED INORGANIC FULLERENES AND NANOTUBES [J].
FELDMAN, Y ;
WASSERMAN, E ;
SROLOVITZ, DJ ;
TENNE, R .
SCIENCE, 1995, 267 (5195) :222-225