Maximal time existence of unnormalized conical Kahler-Ricci flow

被引:3
作者
Shen, Liangming [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z4, Canada
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2020年 / 760卷
关键词
MONGE-AMPERE EQUATIONS; EINSTEIN METRICS; SINGULARITIES; CURVATURE; SURFACES; LIMITS;
D O I
10.1515/crelle-2018-0007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the maximal time existence of Kahler-Ricci flow in [G. Tian and Z. Zhang, On the Kahler-Ricci flow on projective manifolds of general type, Chin. Ann. Math. Ser. B 27 (2006), no. 2, 179-192] and [J. Song and G. Tian, The Kahler-Ricci flow through singularities, Invent. Math. 207 (2017), no. 2, 519-595] to the conical case. Furthermore, if the log canonical bundle K-M + (1 - beta)[D] is big or big and nef, we can examine the limit behaviors of such conical Kahler-Ricci flow. Moreover, these results still hold when D is a simple normal crossing divisor.
引用
收藏
页码:169 / 193
页数:25
相关论文
共 29 条