MODELLING EPIDEMIC DISEASES

被引:1
作者
Gani, J. [1 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
关键词
epidemic model; general epidemic; herd immunity; influenza; plague; smallpox; vaccination; A-PRIORI PATHOMETRY; STOCHASTIC EPIDEMIC; MATHEMATICAL-THEORY; PROBABILITIES; ENDEMICITY;
D O I
10.1111/j.1467-842X.2010.00586_1.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
P>This paper traces the development of mathematical models for epidemics from the 18th century to the present day. The models are shown to be of use in predicting and controlling the spread of infection.
引用
收藏
页码:321 / 329
页数:9
相关论文
共 27 条
[1]  
ABBEY H, 1952, HUM BIOL, V10, P247
[2]  
Andersson H., 2012, STOCHASTIC EPIDEMIC, V151
[3]  
[Anonymous], 1988, Human Monkeypox
[4]  
[Anonymous], 1899, EC WRITINGS W PETTY
[5]  
[Anonymous], 1925, Proceedings of the Edinburgh Mathematical Society, DOI DOI 10.1017/S0013091500034428
[6]  
Bailey N.T.J., 1975, The mathematical theory of infectious diseases and its applications, V2nd, P413
[7]  
Bailey N.T.J., 1957, The mathematical theory of epidemics
[8]   A SIMPLE STOCHASTIC EPIDEMIC [J].
BAILEY, NTJ .
BIOMETRIKA, 1950, 37 (3-4) :193-202
[9]   SIMPLE STOCHASTIC EPIDEMIC - A COMPLETE SOLUTION IN TERMS OF KNOWN FUNCTIONS [J].
BAILEY, NTJ .
BIOMETRIKA, 1963, 50 (3-4) :235-&
[10]  
Baroyan O.V., 1967, Kibernetika, V3, P67