Fast L1kCk polynomial spline interpolation algorithm with shape-preserving properties

被引:10
作者
Nyiri, Eric [1 ]
Gibaru, Olivier [1 ,2 ]
Auquiert, Philippe [1 ]
机构
[1] Arts & Metiers ParisTech, L2MA, F-59046 Lille, France
[2] INRIA Lille Nord Europe, ALIEN Project, F-59650 Villeneuve Dascq, France
关键词
L-1; spline; Interpolation; Shape preserving; Smooth spline; CUBIC L-1 SPLINES; GEOMETRIC-PROGRAMMING APPROACH; L-P SPLINES; MULTISCALE INTERPOLATION; BIVARIATE; SURFACES;
D O I
10.1016/j.cagd.2010.10.002
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this article, we address the problem of interpolating data points by regular L-1-spline polynomial curves of smoothness C-k, k >= 1, that are invariant under rotation of the data. To obtain a C-1 cubic interpolating curve, we use a local minimization method in parallel on five data points belonging to a sliding window. This procedure is extended to create C-k-continuous L-1 splines, k >= 2, on larger windows. We show that, in the C-k-continuous (k >= 1) interpolation case, this local minimization method preserves the linear parts of the data well, while a global L-1 minimization method does not in general do so. The computational complexity of the procedure is linear in the global number of data points, no matter what the order C-k of smoothness of the curve is. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 29 条