Some notes on orthogonally additive polynomials

被引:3
作者
Schwanke, C. [1 ,2 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, Private Bag X20, ZA-0028 Hatfield, South Africa
[2] North West Univ, Unit BMI, Private Bag X6001, ZA-2520 Potchefstroom, South Africa
关键词
Vector lattice; orthogonally additive polynomial; geometric mean; root mean power;
D O I
10.2989/16073606.2021.1953631
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide two new characterizations of bounded orthogonally additive polynomials from a uniformly complete vector lattice into a convex bornological space using separately two polynomial identities of Kusraeva involving the root mean power and the geometric mean. Furthermore, it is shown that a polynomial on a vector lattice is orthogonally additive whenever it is orthogonally additive on the positive cone. These results improve recent characterizations of bounded orthogonally additive polynomials by G. Buskes and the author.
引用
收藏
页码:1559 / 1565
页数:7
相关论文
共 8 条
  • [1] Aliprantis C. D., 1985, POSITIVE OPERATORS
  • [2] FUNCTIONAL-CALCULUS ON RIESZ SPACES
    BUSKES, G
    DEPAGTER, B
    VANROOIJ, A
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 1991, 2 (04): : 423 - 436
  • [3] Characterizing bounded orthogonally additive polynomials on vector lattices
    Buskes, G.
    Schwanke, C.
    [J]. ARCHIV DER MATHEMATIK, 2019, 112 (02) : 181 - 190
  • [4] Functional completions of Archimedean vector lattices
    Buskes, Gerard
    Schwanke, Christopher
    [J]. ALGEBRA UNIVERSALIS, 2016, 76 (01) : 53 - 69
  • [5] [Кусраева Залина Анатольевна Kusraeva Z.A.], 2014, [Владикавказский математический журнал, Vladikavkazskii matematicheskii zhurnal], V16, P49
  • [6] Kusraeva ZA, 2011, SIBERIAN MATH J+, V52, P248
  • [7] Luxemburg WAJ., 1971, RIESZ SPACES
  • [8] Zaanen A.C., 1983, N HOLLAND MATH LIB, V30